HITACHI Inspire the Next

WJ200 Series Inverter Quick Reference Guide

- Single-phase Input 200 V class
- Three-phase Input 200 V class
- Three-phase Input 400 V class

Introduction

Thank you for purchasing the Hitachi WJ200 series inverter.
Please read this Quick Reference Guide (QRG) and Instruction manual, and understand perfectly how to handle properly and the safety cautions of the product before operation, for safety and proper usage.
Note that this QRG is intended for each product and should be delivered to the end user of the inverter.

Safety precautions

Be sure to read this QRG and appended documents thoroughly before installing, operating the inverter.
Maintenance and service items in this QRG are only caution related items. Read the Instruction manual carefully before starting the maintenance and service. (Instruction manual can be downloaded from our website.)
In the Instruction Manual, safety instructions are classified into two levels, namely WARNING and CAUTION.

WARNING : Indicates that incorrect handling may cause hazardous situations, which may result in serious personal injury or death.
 result in moderate or slight personal injury or physical damage alone.

Note that even a \triangle CAUTION level situation may lead to a serious consequence according to circumstances. Be sure to follow every safety instruction, which contains important safety information. Also focus on and observe the items and instructions described under "Notes" in the text.

CAUTION

Many of the drawings in the Instruction Manual show the inverter with covers and/or parts blocking your view being removed.
Do not operate the inverter in the status shown in those drawings. If you have removed the covers and/or parts, be sure to reinstall them in their original positions before starting operation, and follow all instructions in the Instruction Manual when operating the inverter.

1. Installation

Install the inverter on a non-flammable surface, e.g., metal. Otherwise, you run the risk of fire.
Do not place flammable materials near the installed inverter. Otherwise, you run the risk of fire.
When carrying the inverter, do not hold its top cover. Otherwise, you run the risk of injury and damage by dropping the inverter.
Prevent foreign matter (e.g., cut pieces of wire, sputtering welding materials, iron chips, wire, and dust) from entering the inverter. Otherwise, you run the risk of fire.
Install the inverter on a structure able to bear the weight specified in this document. Otherwise, you run the risk of injury due to the inverter falling.
Install the inverter on a vertical wall that is free of vibrations. Otherwise, you run the risk of injury due to the inverter falling.
Do not install and operate the inverter if it is damaged or its parts are missing. Otherwise, you run the risk of injury.
Install the inverter in a well-ventilated indoor site not exposed to direct sunlight. Avoid places where the inverter is exposed to high temperature, high humidity, condensation, dust, explosive gases, corrosive gases, flammable gases, grinding fluid mist, or salt water. Otherwise, you run the risk of fire.
The inverter is precision equipment. Do not allow it to fall or be subject to high impacts, step on it, or place a heavy load on it. Doing so may cause the inverter to fail.
【 $\widehat{4}$ WARNING

- Be sure to ground the inverter. Otherwise, you run the risk of electric shock or fire.
- Commit wiring work to a qualified electrician. Otherwise, you run the risk of electric shock or fire.
- Before wiring, make sure that the power supply is off. Otherwise, you run the risk of electric shock or fire.
Perform wiring only after installing the inverter. Otherwise, you run the risk of electric shock or injury. The inverter must be powered OFF before you change any of the slide switch settings. Otherwise, you run the risk of electric shock or injury.

CAUTION

Make sure that the voltage of AC power supply matches the rated voltage of your inverter.
Otherwise, you run the risk of injury or fire.
Do not input single-phase power into the 3-phase inverter. Otherwise, you run the risk of fire.
Do not connect AC power supply to any of the output terminals (U, V, and W). Otherwise, you run the risk of injury or fire.
Connect an earth-leakage breaker to the power input circuit. Otherwise, you run the risk of fire.
Use only the power cables, earth-leakage breaker, and magnetic contactors that have the specified capacity (ratings). Otherwise, you run the risk of fire.
Do not use the magnetic contactor installed on the primary and secondary sides of the inverter to stop its operation.
Tighten each screw to the specified torque. No screws must be left loose. Otherwise, you run the risk of fire
Before operating slide switch in the inverter, be sure to turn off the power supply. Otherwise, you run the risk of electric shock and injury.
Please make sure that earth or ground screw is tightened properly and completely.
First, check the screws of output terminal (U, V and W) are properly tightened, and then tighten the screws of input terminal (R, S and T)

3. Operation

\square

- While power is supplied to the inverter, even if the inverter has stopped, do not touch any terminal or internal part of the inverter, insert a bar in it, check signals, or connect or disconnect any wire or connector. Otherwise, you run the risk of electric shock, injury or fire.
- Be sure to close the terminal block cover before turning on the inverter power. Do not open the terminal block cover while power is being supplied to the inverter or voltage remains inside. Otherwise, you run the risk of electric shock.
- Do not operate switches with wet hands. Otherwise, you run the risk of electric shock.
- If the retry mode has been selected, the inverter will restart suddenly after a break in the tripping status. Stay away from the machine controlled by the inverter when the inverter is under such circumstances. (Design the machine so that human safety can be ensured, even when the inverter restarts suddenly.) Otherwise, you run the risk of injury.
- Do not select the retry mode for controlling an elevating or traveling device because output free-running status occurs in retry mode. Otherwise, you run the risk of injury or damage to the machine controlled by the inverter.
- If an operation command has been input to the inverter before a short-term power failure, the inverter may restart operation after the power recovery. If such a restart may put persons in danger, design a control circuit that disables the inverter from restarting after power recovery. Otherwise, you run the risk of injury.
- Prepare the additional emergency stop switch in addition to the stop key of the integrated operator and/or the optional operator. Otherwise, there is a danger of injury.
- If an operation command has been input to the inverter before the inverter enters alarm status, the inverter will restart suddenly when the alarm status is reset. Before resetting the alarm status, make sure that no operation command has been input.

Abstract

- Do not touch the heat sink, which heats up during the inverter operation. Otherwise, you run the risk of burn injury. The inverter allows you to easily control the speed of motor or machine operations. Before operating the inverter, confirm the capacity and ratings of the motor or machine controlled by the inverter. Otherwise, you run the risk of injury. Install an external brake system if needed. Otherwise, you run the risk of injury. When using the inverter to operate a standard motor at a frequency of over 60 Hz , check the allowable motor speeds with the manufacturers of the motor and the machine to be driven and obtain their consent before starting inverter operation. Otherwise, you run the risk of damage to the motor and machine. During inverter operation, check the motor for the direction of rotation, abnormal sound, and vibrations. Otherwise, you run the risk of damage to the machine driven by the motor. HIGH VOLTAGE: Dangerous voltage exists even after the Safe Stop is activated. It does NOT mean that the main power has been removed.

4. Maintenance, inspection, and parts replacement

- Before inspecting the inverter, be sure to turn off the power supply and wait for 10 minutes or more.
Otherwise, you run the risk of electric shock. (Before inspection, confirm that the Charge lamp on
the inverter is off.)
- Commit only a designated person to maintenance, inspection, and the replacement of parts. (Be
sure to remove wristwatches and metal accessories, e.g., bracelets, before maintenance and
inspection work and to use insulated tools for the work.) Otherwise, you run the risk of electric
shock and injury.
- Do not rely upon the STO feature to disconnect the power from the motor circuit. It is required isolate
the supply before any maintenance is carried out on the motor circuit. See Functional Safety for
detail.

5. Others

- Never modify the inverter. Otherwise, you run the risk of electric shock and injury.

CAUTION
- Do not discard the inverter with household waste. Contact an industrial waste management company in your area who can treat industrial waste without polluting the environment.

6. When using Safe Stop Function

| WARNING |
| :--- | :--- |
| - When using Safe Stop function, make sure to check whether the safe stop function properly works |
| when installation (before starting operation). Please carefully refer to Functional Safety for detail. |

Contact an industrial waste management company in your area who can treat industrial waste without polluting the environment.

UL® Cautions, Warnings and Instructions

Warnings and Cautions for Troubleshooting and Maintenance

(Standard to comply with : UL508C,CSA C22.2 No.14-05)
Warning Markings
GENERAL:
These devices are open type Power Conversion Equipment. They are intended to be used in an enclosure. Insulated gate bipolar transistor (IGBT) incorporating microprocessor technology. They are operated from a single or three-phase source of supply, and intended to control three-phase induction motors by means of a variable frequency output. The units are intended for general-purpose industrial applications.

MARKING REQUIREMENTS:

Ratings - Industrial control equipment shall be plainly marked with the Listee's name, trademark, File number, or other descriptive marking by which the organization responsible for the product may be identified;
a) "Maximum surrounding air temperature rating of $50{ }^{\circ} \mathrm{C}$."
b) "Solid State motor overload protection reacts with max. 150% of FLA".
c) "Install device in pollution degree 2 environment."
d) "Suitable for use on a circuit capable of delivering not more than 100,000 rms Symmetrical Amperes, 240 or 480 Volts Maximum."
e) "When Protected by CC, G, J or R Class Fuses." or "When Protected By A Circuit Breaker Having An Interrupting Rating Not Less Than 100,000 rms Symmetrical Amperes, 240 or 480 Volts Maximum."
f) "Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes."
g) "Motor over temperature protection is not provided by the drive."

Terminal symbols and Screw size

Inverter Model	Screw Size	Required Torque (N-m)	Wire range
WJ200-001S WJ200-002S WJ200-004S	M3.5	1.0	AWG16 (1.3mm ${ }^{2}$)
WJ200-007S	M4	1.4	AWG12 (3.3mm ${ }^{2}$)
$\begin{aligned} & \text { WJ200-015S } \\ & \text { WJ200-022S } \end{aligned}$	M4	1.4	AWG10 (5.3mm ${ }^{2}$)
$\begin{aligned} & \text { WJ200-001L } \\ & \text { WJ200-002L } \\ & \text { WJ200-004L } \\ & \text { WJ200-007L } \end{aligned}$	M3.5	1.0	AWG16 (1.3mm ${ }^{2}$)
WJ200-015L	M4	1.4	AWG14 (2.1 mm^{2})
WJ200-022L	M4	1.4	AWG12 (3.3mm ${ }^{2}$)
WJ200-037L	M4	1.4	AWG10 (5.3mm ${ }^{2}$)
$\begin{aligned} & \hline \text { WJ200-055L } \\ & \text { WJ200-075L } \end{aligned}$	M5	3.0	AWG6 ($13 \mathrm{~mm}^{2}$)
WJ200-110L	M6	3.9 to 5.1	AWG4 (21mm ${ }^{2}$)
WJ200-150L	M8	5.9 to 8.8	AWG2 (34mm ${ }^{2}$)
WJ200-004H WJ200-007H WJ200-015H	M4	1.4	AWG16 (1.3mm ${ }^{2}$)
WJ200-022H WJ200-030H	M4	1.4	AWG14 (2.1mm ${ }^{2}$)
WJ200-040H	M4	1.4	AWG12 (3.3mm ${ }^{2}$)
$\begin{aligned} & \text { WJ200-055H } \\ & \text { WJ200-075H } \end{aligned}$	M5	3.0	AWG10 (5.3mm ${ }^{2}$)
$\begin{aligned} & \hline \text { WJ200-110H } \\ & \text { WJ200-150H } \end{aligned}$	M6	3.9 to 5.1	AWG6 (13mm ${ }^{2}$)

Fuse Sizes

Distribution fuse size marking is included in the manual to indicate that the unit shall be connected with a Listed Cartridge Nonrenewable fuse, rated 600 Vac with the current ratings as shown in the table below or Type E Combination Motor Controller marking is included in the manual to indicate that the unit shall be connected with, LS Industrial System Co.,Ltd,Type E Combination Motor Controller MMS Series with the ratings as shown in the table below:

Inverter Model	Type	Fuse Rating	Type E CMC

Inverter Specification Label

The Hitachi WJ200 inverters have product labels located on the right side of the housing, as pictured below. Be sure to verify that the specifications on the labels match your power source, and application safety requirements.

The model number for a specific inverter contains useful information about its operating characteristics. Refer to the model number legend below:

Configuration type
$\mathrm{F}=$ with keypad
Input voltage:
S=Single-phase 200 V class
L=Three-phase 200 V class
$\mathrm{H}=$ Three-phase 400 V class

Applicable motor capacity in kW

$001=0.1 \mathrm{~kW}$	$037=3.7 \mathrm{~kW}$
$002=0.2 \mathrm{~kW}$	$040=4.0 \mathrm{~kW}$
$004=0.4 \mathrm{~kW}$	$055=5.5 \mathrm{~kW}$
$007=0.75 \mathrm{~kW}$	$075=7.5 \mathrm{~kW}$
$015=1.5 \mathrm{~kW}$	$110=1 \mathrm{~kW}$
$022=2.2 \mathrm{~kW}$	$150=15 \mathrm{~kW}$
$030=3.0 \mathrm{~kW}$	

WJ200 Inverter Specifications

Model-specific tables for 200 V and 400 V class inverters

The following tables are specific to WJ200 inverters for the 200 V and 400 V class model groups.

Item			Single-phase 200 V class Specifications					
WJ200 inverters, 200V models			001SF	002SF	004SF	007SF	015SF	022SF
Applicable motor size	kW	VT	0.2	0.4	0.55	1.1	2.2	3.0
		CT	0.1	0.2	0.4	0.75	1.5	2.2
	HP	VT	1/4	1/2	3/4	1.5	3	4
		CT	1/8	1/4	1/2	1	2	3
Rated capacity (kVA)	200 V	VT	0.4	0.6	1.2	2.0	3.3	4.1
		CT	0.2	0.5	1.0	1.7	2.7	3.8
	240 V	VT	0.4	0.7	1.4	2.4	3.9	4.9
		CT	0.3	0.6	1.2	2.0	3.3	4.5
Rated input voltage			Single-phase: $200 \mathrm{~V}-15 \%$ to $240 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$					
Rated output voltage			Three-phase: 200 to 240 V (proportional to input voltage)					
Rated output current (A)		VT	1.2	1.9	3.5	6.0	9.6	12.0
		CT	1.0	1.6	3.0	5.0	8.0	11.0
Starting torque			200% at 0.5 Hz					
Braking	Without resistor		$\begin{gathered} 100 \%: \leq 50 \mathrm{~Hz} \\ 50 \%: \leq 60 \mathrm{~Hz} \end{gathered}$				$\begin{aligned} & 70 \%: \leq 50 \mathrm{~Hz} \\ & 50 \%: \leq 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 20 \%: \leq 50 \mathrm{~Hz} \\ & 20 \%: \leq 60 \mathrm{~Hz} \end{aligned}$
	With resistor		150\%					100\%
DC braking			Variable operating frequency, time, and braking force					
Weight		kg	1.0	1.0	1.1	1.6	1.8	1.8
		lb	2.2	2.2	2.4	3.5	4.0	4.0

WJ200 Inverter Specifications, continued...

Item			Three-phase 200V class Specifications					
WJ200 inverters, 200V models			001LF	002LF	004LF	007LF	015LF	022LF
Applicable motor size	kW	VT	0.2	0.4	0.75	1.1	22	3.0
		CT	0.1	0.2	0.4	0.75	1.5	22
	HP	VT	1/4	1/2	1	1.5	3	4
		CT	$1 / 8$	1/4	1/2	1	2	3
Rated capacity (kVA)	200V	VT	0.4	0.6	1.2	2.0	3.3	4.1
		CT	0.2	0.5	1.0	1.7	2.7	3.8
	240 V	VT	0.4	0.7	1.4	2.4	3.9	4.9
		CT	0.3	0.6	1.2	2.0	3.3	4.5
Rated input voltage			Three-phase: 200 V - 15% to $240 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$					
Rated output voltage			Three-phase: 200 to 240 V (proportional to input voltage)					
Rated output current (A)		VT	1.2	1.9	3.5	6.0	9.6	12.0
		CT	1.0	1.6	3.0	5.0	8.0	11.0
Starting torque			200% at 0.5 Hz					
Braking Withou With re	sistor		$\begin{gathered} 100 \%: \leq 50 \mathrm{~Hz} \\ 50 \%: \leq 60 \mathrm{~Hz} \end{gathered}$				$\left\lvert\, \begin{aligned} & 70 \%: \leq 50 \mathrm{~Hz} \mid 20 \%: \leq 50 \mathrm{~Hz} \\ & 50 \%: \leq 60 \mathrm{~Hz} \mid 20 \%: \leq 60 \mathrm{~Hz} \end{aligned}\right.$	
					150\%			100\%
DC braking			Variable operating frequency, time, and braking force					
Weight		kg	1.0	1.0	1.1	1.2	1.6	1.8
		lb	2.2	2.2	2.4	2.6	3.5	4.0

Item			Three-phase 200 V class Specifications					
WJ200 inverters, 200V models			037LF	055LF	075LF	110LF	150LF	
Applicable motor size	kW	VT	5.5	7.5	11	15	18.5	
		CT	3.7	5.5	7.5	11	15	
	HP	VT	7.5	10	15	20	25	
		CT	5	7.5	10	15	20	
Rated capacity (kVA)	200V	VT	6.7	10.3	13.8	19.3	20.7	
		CT	6.0	8.6	11.4	16.2	20.7	
	240 V	VT	8.1	12.4	16.6	23.2	24.9	
		CT	7.2	10.3	13.7	19.5	24.9	
Rated input voltage			Three-phase: 200 V - 15% to $240 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$					
Rated output voltage			Three-phase: 200 to 240 V (proportional to input voltage)					
Rated output current (A)		VT	19.6	30.0	40.0	56.0	69.0	
		CT	17.5	25.0	33.0	47.0	60.0	
Starting torque			200\% at 0.5Hz					
Braking	Without resistor		$\begin{aligned} & 20 \%: \leq 50 \mathrm{~Hz} \\ & 20 \%: \leq 60 \mathrm{~Hz} \end{aligned}$					
	With resistor		100\%					
DC braking			Variable operating frequency, time, and braking force					
Weight		Kg	2.0	3.3	3.4	5.1	7.4	
		lb	4.4	7.3	7.5	11.2	16.3	

WJ200 Inverter Specifications, continued...

Item			Three-phase 400V class Specifications					
WJ200 inverters, 400V models			004HF	007HF	015HF	022HF	030HF	040HF
Applicable motor size	kW	VT	0.75	1.5	2.2	3.0	4.0	5.5
		CT	0.4	0.75	1.5	22	3.0	4.0
	HP	VT	1	2	3	4	5	7.5
		CT	1/2	1	2	3	4	5
Rated capacity (kVA)	380V	VT	1.3	2.6	3.5	4.5	5.7	7.3
		CT	1.1	22	3.1	3.6	4.7	6.0
	480V	VT	1.7	3.4	4.4	5.7	7.3	9.2
		CT	1.4	28	3.9	4.5	5.9	7.6
Rated input voltage			Three-phase: $400 \mathrm{~V}-15 \%$ to $480 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$					
Rated output voltage			Three-phase: 400 to 480 V (proportional to input voltage)					
Rated output current (A)		VT	2.1	4.1	5.4	6.9	8.8	11.1
		CT	1.8	3.4	4.8	5.5	72	92
Starting torque			200% at 0.5 Hz					
Braking	Without resistor		$\begin{gathered} 100 \%: \leq 50 \mathrm{~Hz} \\ 50 \%: \leq 60 \mathrm{~Hz} \\ \hline \end{gathered}$			$\begin{aligned} & 70 \%: \leq 50 \mathrm{~Hz} \\ & 50 \%: \leq 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 20 \%: \leq 50 \mathrm{~Hz} \\ & 20 \%: \leq 60 \mathrm{~Hz} \end{aligned}$	
	With resistor		150\%			100\%		
DC braking			Variable operating frequency, time, and braking force					
Weight		kg	1.5	1.6	1.8	1.9	1.9	2.1
		Ib	3.3	3.5	4.0	4.2	4.2	4.6

The following table shows which models need derating.

1-ph 200V class	Need derating	3-ph 200V class	Need derating	3-ph 400V class	Need derating
WJ200-001S	-	WJ200-001L	-	WJ200-004H	\checkmark
WJ200-002S	-	WJ200-002L	\checkmark	WJ200-007H	\checkmark
WJ200-004S	\checkmark	WJ200-004L	\checkmark	WJ200-015H	-
WJ200-007S	\checkmark	WJ200-007L	-	WJ200-022H	-
WJ200-015S	-	WJ200-015L	-	WJ200-030H	-
WJ200-022S	-	WJ200-022L	-	WJ200-040H	\checkmark
-	-	WJ200-037L	\checkmark	WJ200-055H	-
-	-	WJ200-055L	-	WJ200-075H	\checkmark
-	-	WJ200-075L	\checkmark	WJ200-110H	\checkmark
-	-	WJ200-110L	\checkmark	WJ200-150H	\checkmark
-	-	WJ200-150L	\checkmark	-	-

: need derating

- : need no derating

Use the derating curves to help determine the optimal carrier frequency setting for your inverter and find the output current derating. Be sure to use the proper curve for your particular WJ200 inverter model number. For the detail of the derating curves, please refer to Instruction manual. (Instruction manual can be downloaded from our website)

Basic System Description

A motor control system will obviously include a motor and inverter, as well as a circuit breaker or fuses for safety. If you are connecting a motor to the inverter on a test bench just to get started, that's all you may need for now. But a system can also have a variety of additional components. Some can be for noise suppression, while others may enhance the inverter's braking performance. The figure and table below show a system with all the optional components you might need in your final application.

From power supply

Note 1) For CE application, please refer to page 91, "CE-EMC Installation Guideline".

Determining Wire and Fuse Sizes

The maximum motor current in your application determines the recommended wire size. The following table gives the wire size in AWG. The "Power Lines" column applies to the inverter input power, output wires to the motor, the earth ground connection, and any other components shown in the "Basic System Description" on page 12. The "Signal Lines" column applies to any wire connecting to the two green connectors just inside the front cover panel.

Motor Output				Inverter Model	Wiring		Applicable equipment
kW		HP			Power Lines	Signal Lines	Fuse (UL-rated, class J, 600 V , Maximum allowable current)
VT	CT	VT	CT				
0.2	0.1	1/4	1/8	WJ200-001SF	AWG16 / $1.3 \mathrm{~mm}^{2}$ ($75^{\circ} \mathrm{C}$ only)	18 to 28 AWG / 0.14 to $0.75 \mathrm{~mm}^{2}$ shielded wire (see Note 4)	10A
0.4	0.2	1/2	$1 / 4$	WJ200-002SF			
0.55	0.4	$3 / 4$	1/2	WJ200-004SF			
1.1	0.75	1.5	1	WJ200-007SF	$\begin{gathered} \text { AWG12 / 3.3mm² } \\ \left(75^{\circ} \mathrm{C} \text { only }\right) \\ \hline \end{gathered}$		20A
2.2	1.5	3	2	WJ200-015SF	AWG10 / 5.3mm ${ }^{2}$		
3.0	2.2	4	3	WJ200-022SF			30A
0.2	0.1	$1 / 4$	1/8	WJ200-001LF	AWG16 / $1.3 \mathrm{~mm}^{2}$		10A
0.4	0.2	1/2	$1 / 4$	WJ200-002LF			
0.75	0.4	1	1/2	WJ200-004LF			
1.1	0.75	1.5	1	WJ200-007LF			15A
2.2	1.5	3	2	WJ200-015LF	AWG14/2.1mm² $\text { (} 75^{\circ} \mathrm{C} \text { only) }$		
3.0	2.2	4	3	WJ200-022LF	$\begin{gathered} \text { AWG12 / 3.3mm² } \\ \left(75^{\circ} \mathrm{C} \text { only }\right) \end{gathered}$		20A
5.5	3.7	7.5	5	WJ200-037LF	$\begin{gathered} \text { AWG10 / 5.3mm }{ }^{2} \\ \left(75^{\circ} \mathrm{C} \text { only }\right) \\ \hline \end{gathered}$		30A
7.5	5.5	10	7.5	WJ200-055LF	AWG6 / $13 \mathrm{~mm}^{2}$ ($75^{\circ} \mathrm{C}$ only)		60A
11	7.5	15	10	WJ200-075LF			
15	11	20	15	WJ200-110LF	AWG4/21mm ${ }^{2}$ ($75^{\circ} \mathrm{C}$ only)		80A
18.5	15	25	20	WJ200-150LF	AWG2 / $34 \mathrm{~mm}^{2}$ ($75^{\circ} \mathrm{C}$ only)		80A
0.75	0.4	1	1/2	WJ200-004HF	AWG16 / 1.3mm ${ }^{2}$		10A
1.5	0.75	2	1	WJ200-007HF			
2.2	1.5	3	2	WJ200-015HF			
3.0	2.2	4	3	WJ200-022HF	AWG14 / $2.1 \mathrm{~mm}^{2}$		
4.0	3.0	5	4	WJ200-030HF			15A
5.5	4.0	7.5	5	WJ200-040HF	$\begin{gathered} \text { AWG12 / 3.3mm }{ }^{2} \\ \left(75^{\circ} \mathrm{C} \text { only }\right) \\ \hline \end{gathered}$		
7.5	5.5	10	7.5	WJ200-055HF	AWG10/ $5.3 \mathrm{~mm}^{2}$ ($75^{\circ} \mathrm{C}$ only)		30A
11	7.5	15	10	WJ200-075HF			
15	11	20	15	WJ200-110HF	$\begin{aligned} & \text { AWG6 / } 13 \mathrm{~mm}^{2} \\ & \left(75^{\circ} \mathrm{C} \text { only }\right) \end{aligned}$		50A
18.5	15	25	20	WJ200-150HF	$\begin{gathered} \text { AWG6 / } 13 \mathrm{~mm}^{2} \\ \left(75^{\circ} \mathrm{C}\right. \text { only) } \\ \hline \end{gathered}$		50A

Note 1: Field wiring must be made by a UL-Listed and CSA-certified closed-loop terminal connector sized for the wire gauge involved. Connector must be fixed by using the crimping tool specified by the connector manufacturer.
Note 2: Be sure to consider the capacity of the circuit breaker to be used.
Note 3: Be sure to use a larger wire gauge if power line length exceeds 66 ft . (20m).
Note 4: Use 18 AWG / 0.75 mm^{2} wire for the alarm signal wire ([AL0], [AL1], [AL2] terminals).

Wire the Inverter Input to a Supply

In this step, you will connect wiring to the input of the inverter. First, you must determine whether the inverter model you have required three-phase power only, or single-phase power only. All models have the same power connection terminals [R/L1], [S/L2], and [T/L3]. So you must refer to the specifications label (on the side of the inverter) for the acceptable power source types! For inverters that can accept single-phase power and are connected that way, terminal [S/L2] will remain unconnected.
Note the use of ring lug connectors for a secure connection.
Single-phase 200 V 0.1 to 0.4 kW
Three-phase 200V 0.1 to 0.75 kW

Single-phase 200V
0.75 to 2.2 kW

Three-phase 200V
Three-phase 400V
1.5, 2.2kW
0.4 to 3.0 kW

Three-phase 200V 3.7kW
Three-phase 400V 4.0kW

Three-phase 200 V
Three-phase 400V 5.5, 7.5kW

Three-phase 200 V
11kW
Three-phase 400V 11, 15kW

Three-phase 200V 15kW

NOTE: An inverter powered by a portable power generator may receive a distorted power waveform, overheating the generator. In general, the generator capacity should be five times that of the inverter (kVA).

Using the Front Panel Keypad

Please take a moment to familiarize yourself with the keypad layout shown in the figure below. The display is used in programming the inverter's parameters, as well as monitoring specific parameter values during operation.

Key and Indicator Legend

Items	Contents
(1) POWER LED	Turns ON (Green) while the inverter is powered up.
(2) ALARM LED	Turns ON (Red) when the inverter trips.
(3) Program LED	Turns ON (Green) when the display shows changeable parameter. $>$ Blinks when there is a mismatch in setting.
(4) RUN LED	Turns ON (Green) when the inverter is driving the motor.
(5) Monitor LED [Hz]	Turns ON (Green) when the displayed data is frequency related.
(6) Monitor LED [A]	Turns ON (Green) when the displayed data is current related.
(7) Run command LED	Turns ON (Green) when a Run command is set to the operator. (Run key is effective.)
(8) 7-seg LED	Shows each parameter, monitors etc.
(9) RUN key	Makes inverter run.
(10) STOP/RESET key	$>$ Makes inverter decelerates to a stop. $>$ Reset the inverter when it is in trip situation
(11) ESC key	$>$ Go to the top of next function group, when a function mode is shown $>$ Cancel the setting and return to the function code, when a data is shown $>$ Moves the cursor to a digit left, when it is in digit-to-digit setting mode $>$ Pressing for 1 second leads to display data of dDO I , regardless of current display.
(12) Up key (13) Down key	$>$ Increase or decrease the data. $>$ Pressing the both keys at the same time gives you the digit-to-digit edit.
(14) SET key	$>$ Go to the data display mode when a function code is shown $>$ Stores the data and go back to show the function code, when data is shown. $>$ Moves the cursor to a digit right, when it is in digit-to-digit display mode
(15) USB connector	Connect USB connector (mini-B) for using PC communication
(16) RJ45 connector	Connect RJ45 jack for remote operator
(17)Remote Operator	Keys on the front panel don't work while the remote operator is connected ([STOP] can be validated). What to display on the 7 -seg can be set with parameter b 150

Keys, Modes, and Parameters

The purpose of the keypad is to provide a way to change modes and parameters. The term function applies to both monitoring modes and parameters. These are all accessible through function codes that are primary 4-character codes. The various functions are separated into related groups identifiable by the left-most character, as the table shows.

Function Group	Type (Category) of Function	Mode to Access	PRG LED Indicator
"d"	Monitoring functions	Monitor	O
"F"	Main profile parameters	Program	\bullet
"A"	Standard functions	Program	\bullet
"b"	Fine tuning functions	Program	\bullet
"C"	Intelligent terminal functions	Program	\bullet
"H"	Motor constant related functions	Program	\bullet
"P"	Pulse train input, torque, EzSQ, and communication related functions	Program	\bullet
"U"	User selected parameters	Program	\bullet
"E"	Error codes	-	-

You can see from the following page how to monitor and/or program the parameters.

Keypad Navigation Map

The WJ200 Series inverter drives have many programmable functions and parameters. The following pages will cover these in detail, but you need to access just a few items to perform the powerup test. The menu structure makes use of function codes and parameter codes to allow programming and monitoring with only a 4-digit display and keys and LEDs. So, it is important to become familiar with the basic navigation map of parameters and functions in the diagram below. You may later use this map as a reference.

NOTE: Pressing the [ESC] key will make the display go to the top of next function group, regardless the display contents. (e.g. AO2 I \rightarrow [ESC] \rightarrow 6OO I)

[Setting example]

After power ON, changing from 0.00 display to change the 2002 (Run command source) data.

SET :Fixes and stores the data and moves back to the function code
:Cancels the change and moves back to the function code

Function code $d x x x$ are for monitor and not possible to change.
Function codes Fxxx other than $\mathrm{FDO4}$ are reflected on the performance just after changing the data (before pressing SET key), and there will be no blinking.

	When a function code is shown.	When a data is shown...
ESC key	Move on to the next function group	Cancels the change and moves back to the function code
SET key	Move on to the data display	Fix and stores the data and moves back to the function code
\triangle key	Increase function code	Increase data value
\square key	Decrease function code	Decrease data value

[^0]
Connecting to PLCs and Other Devices

Hitachi inverters (drives) are useful in many types of applications. During installation, the inverter keypad (or other programming device) will facilitate the initial configuration. After installation, the inverter will generally receive its control commands through the control logic connector or serial interface from another controlling device. In a simple application such as single-conveyor speed control, a Run/Stop switch and potentiometer will give the operator all the required control. In a sophisticated application, you may have a programmable logic controller (PLC) as the system controller, with several connections to the inverter.

It is not possible to cover all the possible types of application in this QRG. It will be necessary for you to know the electrical characteristics of the devices you want to connect to the inverter. Then, this section and the following sections on I/O terminal functions can help you quickly and safely connect those devices to the inverter.

CAUTION: It is possible to damage the inverter or other devices if your application exceeds the maximum current or voltage characteristics of a connection point.

The connections between the inverter and other devices rely on the electrical input/output characteristics at both ends of each connection, shown in the diagram to the right. The inverter's configurable inputs accept either a sourcing or sinking output from an external device (such as PLC). The following page shows the inverter's internal electrical component(s) at each I/O terminal. In some cases, you will need to insert a power source in the interface wiring.

In order to avoid equipment damage and get your application running smoothly, we recommend drawing a schematic of each connection between the inverter and the other device. Include the internal components of each device in the schematic, so that it makes a complete circuit loop.

After making the schematic, then:

1. Verify that the current and voltage for each connection is within the operating limits of each device.

2. Make sure that the logic sense (active high or active low) of any ON/OFF connection is correct.
3. Check the zero and span (curve end points) for analog connections, and be sure the scale factor from input to output is correct.
4. Understand what will happen at the system level if any particular device suddenly loses power, or powers up after other devices.

Example Wiring Diagram

The schematic diagram below provides a general example of logic connector wiring, in addition to basic power and motor wiring converted in the preceding pages. The goal of this page is to help you determine the proper connections for the various terminals shown below for your application needs.

Control Logic Signal Specifications

The control logic connectors are located just behind the front housing cover. The relay contacts are just to the left of the logic connectors. Connector labeling is shown below.

Terminal Name	Description	Ratings
P24	+24V for logic inputs	24VDC, 100mA. (do not short to terminal L)
PLC	Intelligent input common	To change to sink type, remove the jumper wire between [PLC] and [L], and connect it between [P24] and [PLC]. In this case, connecting [L] to [1]~[7] makes each input ON. Please remove the jumper wire when using external power supply.
1 2	Discrete logic inputs (Terminal [3],[4],[5] and [7] have dual function. See following description and related pages for the details.)	27VDC max. (use PLC or an external supply referenced to terminal L)
4/GS2 5/PTC 6 7/EB		
GS1(3)	Safe stop input GS1	Functionality is based on ISO13849-1 *4

Terminal Name	Description	Ratings
0	Analog voltage input	0 to 9.8 VDC range, 10 VDC nominal, input impedance $10 \mathrm{k} \Omega$
H	+10V analog reference	10VDC nominal, 10mA max.
SP, SN	Serial communication terminal	For RS485 Modbus communication.
ALO, AL1, AL2 *3	Relay common contact	250VAC, 2.5A (R load) max. 250VAC, 0.2 A $(1$ load, P.F. $=0.4$) max. 100VAC, 10 mA min. 30VDC, 3.0A (R load) max. 30VDC, 0.7 A (I load, P.F. $=0.4$) max. 5VDC, 100 mA min.

Note 1: The two terminals [L] are electrically connected together inside the inverter.
Note 2: We recommend using [L] logic GND (to the right) for logic input circuits and [L] analog GND (to the left) for analog I/O circuits.
Note 3: Refer to page 42 for details of trip signals.
Note 4: Refer to page 96, "Functional safety" for details

Wiring sample of control logic terminal (Source logic)

Freq. meter

Note: If relay is connected to intelligent output, install a diode across the relay coil (reverse-biased) in order to suppress the turn-off spike.

Caution for intelligent terminals setting

Please avoid conducting below procedure, because if you follow procedure describe below, the inverter setting will be initialized.

1) Turning on power while [Intelligent input terminal $1 / 2 / 3$ are ON] and [Intelligent input terminal 4/5/6/7 are OFF].
2) After 1)'s condition, turning off power.
3) After 2)'s condition, turning on power while [Intelligent input terminal 2/3/4 are ON] and [Intelligent input terminal 1/5/6/7 are OFF].

Sink/source logic of intelligent input terminals

Source or sink logic is switched by a jumper wire as below.

Source logic

Sink logic

Wire size for control and relay terminals

Use wires within the specifications listed below. For safe wiring and reliability, it is recommended to use ferrules, but if solid or stranded wire is used, stripping length should be 8 mm .

	Solid mm^{2} (AWG)	Stranded mm^{2} (AWG)	Ferrule mm^{2} (AWG)
Control logic terminal	0.2 to 1.5	0.2 to 1.0	0.25 to 0.75
(AWG 24 to 16)	(AWG 24 to 17)	(AWG 24 to 18)	
Relay terminal	0.2 to 1.5	0.2 to 1.0	0.25 to 0.75
	(AWG 24 to 16)	(AWG 24 to 17)	(AWG 24 to 18)

Recommended ferrule
For safe wiring and reliability, it is recommended to use following ferrules.

$\begin{gathered} \text { Wire size } \\ \mathrm{mm}^{2} \text { (AWG) } \end{gathered}$	Model name of ferrule *	L [mm]	Фd [mm]	ФD [mm]	
0.25 (24)	AI 0.25-8YE	12.5	0.8	2.0	
0.34 (22)	AI 0.34-8TQ	12.5	0.8	2.0	
0.5 (20)	Al 0.5-8WH	14	1.1	2.5	
0.75 (18)	Al 0.75-8GY	14	1.3	2.8	

* Supplier: Phoenix contact

Crimping pliers: CRIPMFOX UD 6-4 or CRIMPFOX ZA 3

How to connect?
(1) Push down an orange actuating lever by a slotted screwdriver (width 2.5 mm max.).
(2) Plug in the conductor.
(3) Pull out the screwdriver then the conductor is fixed.

Intelligent Terminal Listing

Intelligent Inputs

The following table shows the list of the functions which can be assigned to each intelligent input. Please refer to the Instruction manual for the detail information.

Input Function Summary Table		
Symbol	Code	Function Name
FW	00	Forward Run/Stop
RV	01	Reverse Run/Stop
CF1	02	Multi-speed Select, Bit 0 (LSB)
CF2	03	Multi-speed Select, Bit 1
CF3	04	Multi-speed Select, Bit 2
CF4	05	Multi-speed Select, Bit 3 (MSB)
JG	06	Jogging
DB	07	External DC braking
SET	08	Set (select) 2nd Motor Data
2CH	09	2-stage Acceleration and Deceleration
FRS	11	Free-run Stop
EXT	12	External Trip
USP	13	Unattended Start Protection
CS	14	Commercial power source switchover
SFT	15	Software Lock
AT	16	Analog Input Voltage/Current Select
RS	18	Reset Inverter
PTC	19	PTC thermistor Thermal Protection
STA	20	Start (3-wire interface)
STP	21	Stop (3-wire interface)
F/R	22	FWD, REV (3-wire interface)
PID	23	PID Disable
PIDC	24	PID Reset
UP	27	Remote Control UP Function
DWN	28	Remote Control Down Function
UDC	29	Remote Control Data Clearing
OPE	31	Operator Control
SF1~SF7	32~38	Multi-speed Select,Bit operation Bit 1~7
OLR	39	Overload Restriction Source Changeover
TL	40	Torque Limit Selection
TRQ1	41	Torque limit switch 1
TRQ2	42	Torque limit switch 2
BOK	44	Brake confirmation
LAC	46	LAD cancellation
PCLR	47	Pulse counter clear
ADD	50	ADD frequency enable
F-TM	51	Force Terminal Mode
ATR	52	Permission for torque command input
KHC	53	Clear watt-hour data
MI1~M17	56~62	General purpose input (1)~(7)
AHD	65	Analog command hold
CP1~CP3	66~68	Multistage-position switch (1)~(3)
ORL	69	Limit signal of zero-return
ORG	70	Trigger signal of zero-return
SPD	73	Speed/position changeover
GS1	77	STO1 input (Safety related signal)
GS2	78	STO2 input (Safety related signal)
485	81	Starting communication signal
PRG	82	Executing EzSQ program
HLD	83	Retain output frequency
ROK	84	Permission of Run command

Input Function Summary Table		
Symbol	Code	Function Name
EB	85	Rotation direction detection (phase B)
DISP	86	Display limitation
PSET	91	"PSET" simple position control retains preset place.
NO	255	No assign

Intelligent Outputs

The following table shows the list of the functions which can be assigned to each intelligent input. Please refer to the Instruction manual for the detail information.

Output Function Summary Table		
Symbol	Code	Function Name
RUN	00	Run Signal
FA1	01	Frequency Arrival Type 1-Constant Speed
FA2	02	Frequency Arrival Type 2-Over frequency
OL	03	Overload Advance Notice Signal
OD	04	PID Deviation error signal
AL	05	Alarm Signal
FA3	06	Frequency Arrival Type 3-Set frequency
OTQ	07	Over/under Torque Threshold
UV	09	Undervoltage
TRQ	10	Torque Limited Signal
RNT	11	Run Time Expired
ONT	12	Power ON time Expired
THM	13	Thermal Warning
BRK	19	Brake Release Signal
BER	20	Brake Error Signal
ZS	21	Zero Hz Speed Detection Signal
DSE	22	Speed Deviation Excessive
POK	23	Positioning Completion
FA4	24	Frequency Arrival Type 4-Over frequency
FA5	25	Frequency Arrival Type 5-Set frequency
OL2	26	Overload Advance Notice Signal 2
ODc	27	Analog Voltage Input Disconnect Detection
OIDc	28	Analog Voltage Output Disconnect Detection
FBV	31	PID Second Stage Output
NDc	32	Network Disconnect Detection
LOG1~3	33~35	Logic Output Function 1~3
WAC	39	Capacitor Life Warning Signal
WAF	40	Cooling Fan Warning Signal
FR	41	Starting Contact Signal
OHF	42	Heat Sink Overheat Warning
LOC	43	Low load detection
MO1~3	44~46	General Output 1~3
IRDY	50	Inverter Ready Signal
FWR	51	Forward Operation
RVR	52	Reverse Operation
MJA	53	Major Failure Signal
WCO	54	Window Comparator for Analog Voltage Input
WCOI	55	Window Comparator for Analog Current Input
FREF	58	Frequency Command Source
REF	59	Run Command Source
SETM	60	$2^{\text {nd }}$ Motor in operation
EDM	62	STO (Safe Torque Off) Performance Monitor (Output terminal 11 only)
OP	63	Option control signal
no	255	Not used

Using Intelligent Input Terminals

Terminals [1], [2], [3], [4], [5], [6] and [7] are identical, programmable inputs for general use. The input circuits can use the inverter's internal (isolated) +24 V field supply or an external power supply. This section describes input circuits operation and how to connect them properly to switches or transistor outputs on field devices.

The WJ200 inverter features selectable sinking or sourcing inputs. These terms refer to the connection to the external switching device-it either sinks current (from the input to GND) or sources current (from a power source) into the input. Note that the sink/source naming convention may be different in your particular country or industry. In any case, just follow the wiring diagrams in this section for your application.

The inverter has a jumper wire for configuring the choice of sinking or sourcing inputs. To access it, you must remove the front cover of the inverter housing. In the figure to the top right, the jumper wire is shown as attached to the logic terminal block (connector). If you need to change to the source type connection, remove the jumper wire and connect it as shown in the figure at the bottom right.

Logic inputs

Source logic connection

CAUTION: Be sure to turn OFF power to the inverter before changing the jumper wire position. Otherwise, damage to the inverter circuitry may occur.
[PLC] Terminal Wiring - The [PLC] terminal (Programmable Logic Control terminal) is named to include various devices that can connect to the inverter's logic inputs. In the figure to the right, note the [PLC] terminal and the jumper wire. Locating the jumper wire between [PLC] and [L] sets the input logic source type, which is the default setting for EU and US versions. In this case, you connect input terminal to [P24] to make it active. If instead you locate the jumper wire between [PLC] and [P24], the input logic will be sink type. In this case, you connect the input terminal to [L] to make it active.

The wiring diagram on the following pages show the four combinations of using sourcing or sinking inputs, and using the internal or an external DC supply.

The two diagrams below input wiring circuits using the inverter's internal +24V supply. Each diagram shows the connection for simple switches, or for a field device with transistor outputs. Note that in the lower diagram, it is necessary to connect terminal [L] only when using the field device with transistors. Be sure to use the correct connection of the jumper wire shown for each wiring diagram.

Sinking Inputs, Internal Supply
Jumper wire $=[\mathrm{PLC}]-[\mathrm{P} 24]$ position

Open collector outputs,
NPN transistors

Sourcing Inputs, Internal Supply

Jumper wire $=[\mathrm{PLC}]-[\mathrm{L}]$ position

PNP transistor
sourcing outputs

The two diagrams below show input wiring circuits using an external supply. If using the "Sinking Inputs, External Supply" in below wiring diagram, be sure to remove the jumper wire, and use a diode (*) with the external supply. This will prevent a power supply contention in case the jumper wire is accidentally placed in the incorrect position. For the "Sourcing Inputs, External Supply", please connect the jumper wire as drawn in the diagram below.

Sinking Inputs, External Supply

Jumper wire = Removed

Open collector outputs,
NPN transistors

* Note: Make sure to remove the jumper wire in case of using an external power supply.

Sourcing Inputs, External Supply

Jumper wire = Removed

PNP transistor

 sourcing outputs

CAUTION: Be sure to connect diode in between "P24" and "PLC" when connecting plural inverters with digital input wiring in common.

By having ability inverter doesn't block the current flowing into itself when it is not powered. This may cause the closed circuit when two or more inverters are connected to common I/O wiring as shown below to result in unexpected turning the on the input. To avoid this closed circuit, please put the diode (rated:50V/0.1A) in the path as described below.

Switch
OFF

Switch
OFF

Switch
OFF

In case of Source logic

Switch
OFF

Forward Run/Stop and Reverse Run/Stop Commands:

When you input the Run command via the terminal [FW], the inverter executes the Forward Run command (high) or Stop command (low). When you input the Run command via the terminal [RV], the inverter executes the Reverse Run command (high) or Stop command (low).

Option Code	Terminal Symbol	Function Name	State	Description							
00	FW	Forward Run/Stop	ON	Inverter is in Run Mode, motor runs forward							
			OFF	Inverter is in Stop Mode, motor stops							
01	RV	Reverse Run/Stop	ON	Inverter is in Run Mode, motor runs reverse Inverter is in Stop Mode, motor stops							
			OFF								
Valid for inputs:		[00 1~[007		Example (default input configuration shown see page 69):							
	settings	HOCL $=01$									
Notes: - When the Forward Run and Reverse Run commands are active at the same time, the inverter enters the Stop Mode. - When a terminal associated with either [FW] or [RV] function is configured for normally closed, the motor starts rotation when that terminal is disconnected or otherwise has no input voltage.				7 6 5 4 3 2 1 L PLC P24							
				See I/O specs on page 24, 25.							

NOTE: The parameter F004, Keypad Run Key Routing, determines whether the single Run key issues a Run FWD command or Run REV command. However, it has no effect on the [FW] and [RV] input terminal operation.

WARNING: If the power is turned ON and the Run command is already active, the motor starts rotation and is dangerous! Before turning power ON, confirm that the Run command is not active.

Multi-Speed Select ~Binary Operation

The inverter can store up to 16 different target frequencies (speeds) that the motor output uses for steady-state run condition. These speeds are accessible through programming four of the intelligent terminals as binary-encoded inputs CF1 to CF4 per the table to the right. These can be any of the six inputs, and in any order. You can use fewer inputs if you need eight or fewer speeds.

NOTE: When choosing a subset of speeds to use, always start at the top of the table, and with the least-significant bit: CF1, CF2, etc.

Multi- speed	Input Function			
	CF4	CF3	CF2	CF1
Speed 0	0	0	0	0
Speed 1	0	0	0	1
Speed 2	0	0	1	0
Speed 3	0	0	1	1
Speed 4	0	1	0	0
Speed 5	0	1	0	1
Speed 6	0	1	1	0
Speed 7	0	1	1	1
Speed 8	1	0	0	0
Speed 9	1	0	0	1
Speed 10	1	0	1	0
Speed 11	1	0	1	1
Speed 12	1	1	0	0
Speed 13	1	1	0	1
Speed 14	1	1	1	0
Speed 15	1	1	1	1

The example with eight speeds in the figure below shows how input switches configured for CF1-CF4 functions can change the motor speed in real time.

NOTE: Speed 0 depends on ROOI parameter value.

Option Code	Terminal Symbol	Function Name	State	Description					
02	CF1	Multi-speed Select, Bit 0 (LSB)	ON	Binary encoded speed select, Bit 0, logical 1					
			OFF	Binary encoded speed select, Bit 0, logical 0					
03	CF2	Multi-speed Select, Bit 1	ON	Binary encoded speed select, Bit 1, logical 1					
			OFF	Binary encoded speed select, Bit 1, logical 0					
04	CF3	Multi-speed Select, Bit 2	ON	Binary encoded speed select, Bit 2, logical 1					
			OFF						
05	CF4	Multi-speed Select, Bit 3 (MSB)	ON	Binary encoded speed select, Bit 3, logical 1 Binary encoded speed select, Bit 3, logical 0					
			OFF						
Valid fo	nputs:	C00 1~[007		Example (some CF inputs require input configuration; some are default inputs): CF4 CF3 CF2 CF1					
Requir	settings	FOO I, ROD $1=02$, RO20 to FO 35							
Notes: - When programming the multi-speed settings, be sure to press the SET key each time and then set the next multi-speed setting. Note that when the key is not pressed, no data will be set. - When a multi-speed setting more than 50 Hz $(60 \mathrm{~Hz})$ is to be set, it is necessary to program the maximum frequency 7004 high enough to allow that speed				See I/O specs on page 24,25 .					

Two Stage Acceleration and Deceleration

When terminal [2CH] is turned ON, the inverter changes the rate of acceleration and deceleration from the initial settings (FOO2 and FOOF) to use the second set of acceleration/ deceleration values. When the terminal is turned OFF, the inverter is returned to the original acceleration and deceleration time (FOO2 acceleration time 1, and F003 deceleration time 1). Use ADI2 (acceleration time 2) and 8093 (deceleration time 2) to set the second stage acceleration and deceleration times.

In the graph shown above, the [2CH] becomes active during the initial acceleration. This causes the inverter to switch from using acceleration 1 (FOO2) to acceleration 2 (月092).

Unattended Start Protection

If the Run command is already set when power is turned ON, the inverter starts running immediately after powerup. The Unattended Start Protection (USP) function prevents that automatic startup, so that the inverter will not run without outside intervention. When USP is active and you need to reset an alarm and resume running, either turn the Run command OFF, or perform a reset operation by the terminal [RS] input or the keypad Stop/reset key.

In the figure below, the [USP] feature is enabled. When the inverter power turns ON, the motor does not start, even though the Run command is already active. Instead, it enters the USP trip state, and displays E 1 error code. This requires outside intervention to reset the alarm by turning OFF the Run command per this example (or applying a reset). Then the Run command can turn ON again and start the inverter output.

Reset Inverter

The [RS] terminal causes the inverter to execute the reset operation. If the inverter is in Trip Mode, the reset cancels the Trip state. When the signal [RS] is turned ON and OFF, the inverter executes the reset operation. The minimum pulse width for [RS] must be 12 ms or greater. The alarm output will be cleared within 30 ms after the onset of the Reset command.

WARNING: After the Reset command is given and the alarm reset occurs, the motor will restart suddenly if the Run command is already active. Be sure to set the alarm reset after verifying that the Run command is OFF to prevent injury to personnel.

- A terminal configured with the [RS] function can only be configured for normally open operation. The terminal cannot be used in the normally closed contact state.
- When input power is turned ON, the inverter performs the same reset operation as it does when a pulse on the [RS] terminal occurs.
- The Stop/Reset key on the inverter is only operational for a few seconds after inverter powerup when a hand-held remote operator is connected to the inverter.
- If the [RS] terminal is turned ON while the motor is running, the motor will be free running (coasting).
- If you are using the output terminal OFF delay feature (any of [145 , [147 , [$149>0.0 \mathrm{sec}$.), the [RS] terminal affects the ON-to-OFF transition slightly. Normally (without using OFF delays), the [RS] input causes the motor output and the logic outputs to turn OFF together, immediately. However, when any output uses an OFF delay, then after the [RS] input turns ON, that output will remain ON for an additional 1 sec . period (approximate) before turning OFF.

Using Intelligent Output Terminals

Run Signal

When the [RUN] signal is selected as an intelligent output terminal, the inverter outputs a signal on that terminal when it is in Run Mode. The output logic is active low, and is the open collector type (switch to ground).

Option Code	Terminal Symbol	Function Name	State	
00	RUN	Run Signal	ON	w
		OFF	w	
Valid for inputs:	11,12, ALO - AL2		E	
Required settings		(none)		

Notes:

- The inverter outputs the [RUN] signal whenever the inverter output exceeds the start frequency specified by parameter b밀. The start frequency is the initial inverter output frequency when it turns ON.
- The example circuit for terminal [11] drives a relay coil. Note the use of a diode to prevent the negative going turn-off spike generated by the coil from damaging the inverter's output transistor.
when inverter is in Run Mode
when inverter is in Stop Mode
Example for terminal [11] (default output configuration shown see page 69):

Example for terminal [AL0], [AL1], [AL2] (requires output configuration see page 69):

See I/O specs on page 24,25 .

Frequency Arrival Signals

The Frequency Arrival group of outputs helps coordinate external systems with the current velocity profile of the inverter. As the name implies, output [FA1] turns ON when the output frequency arrives at the standard set frequency (parameter F001). Output [FA2] relies on programmable accel/ decel thresholds for increased flexibility. For example, you can have an output turn ON at one frequency during acceleration, and have it turn OFF at a different frequency during deceleration. All transitions have hysteresis to avoid output chatter if the output frequency is near one of the thresholds.

Option Code	Terminal Symbol	Function Name	State	Description		
01	FA1	Frequency Arrival Type 1 - Constant Speed	ON	when output to motor is at the constant frequency		
			OFF	when output to motor is OFF, or in any acceleration or deceleration ramp		
02	FA2	Frequency Arrival Type 2 - Over frequency	ON	when output to motor is at or above the set frequency thresholds for, even if in acceleration or decel ramps		
			OFF	when output to motor is OFF, or during accel or decel before the respective thresholds are crossed		
05	FA3	Frequency Arrival Type 3 - Set frequency	ON	when output to motor is at the set frequency		
			OFF	when output to motor is OFF, or in any acceleration or deceleration ramp		
24	FA4	Frequency Arrival Type 4 - Over frequency (2)	ON	when output to motor is at or above the set frequency thresholds for, even if in acceleration or decel ramps		
			OFF	when output to motor is OFF, or during accel or decel before the respective thresholds are crossed		
25	FA5	Frequency Arrival Type 5 - Set frequency (2)	ON	when output to motor is at the set frequency		
			OFF	when output to motor is OFF, or in any acceleration or deceleration ramp		
Valid for inputs:		11, 12, AL0 - AL2		Example for terminal [11] (default output configuration shown see page 69):		
Required settings		ᄃОЧС, โО4ヨ, ГО45, โ046,				
Notes: - For most applications you will need to use only one type of frequency arrival outputs (see examples). However, it is possible to assign both output terminals to output functions [FA1] and [FA2]				I Inverter output		
- For each frequency arrival threshold, the output anticipates the threshold (turns ON early) by 1.0% of maximum frequency						

- The output turns OFF as the output frequency moves away from the threshold, delayed by 2.0% of maximum frequency
- The example circuit for terminal [11] drives a relay coil. Note the use of a diode to prevent the negative going turn-off spike generated by the coil from damaging the inverter's output transistor

Example for terminal [AL0], [AL1], [AL2] (requires output configuration see page 69):

See I/O specs on page 24,25 .

Frequency arrival output [FA1] uses the standard output frequency (parameter F001) as the threshold for switching. In the figure to the right, Frequency Arrival [FA1] turns ON when the output frequency gets within Fon Hz below or Fon Hz above the target constant frequency, where Fon is 1% of the set maximum frequency and Foff is 2% of the set maximum frequency. This provides hysteresis that prevents output chatter near the threshold value. The hysteresis effect causes the output to turn ON slightly early as the speed approaches the threshold. Then the turn-OFF point is slightly delayed. Note the active low nature of the signal, due to the open collector output.

Frequency arrival output [FA2/FA4] works the same way; it just uses two separate thresholds as shown in the figure to the right. These provide for separate acceleration and deceleration thresholds to provide more flexibility than for [FA1]. [FA2/FA4] uses [042/[045 during acceleration for the ON threshold, and $[043 /[045$ during deceleration for the OFF threshold. This signal also is active low. Having different accel and decel thresholds provides an asymmetrical output function. However, you can use equal ON and OFF thresholds, if desired.

As for [FA3/FA5] signal, the basic meaning of "Fon/Foff" is the same as above.

And, " $[042 /[045$ and $[04 \exists /[045$ are correlated with [FA2/FA4] signal.

Basically, the meaning of "Fon/Foff' in this case is the same as above examples, but there are slight differences from the usage of [FA2/FA4] signal.

In acceleration status, [FA3/FA5] signal becomes ON from ("[D42/[045" - "Fon") to ("โロ4 /[С045" + "Foff').

In deceleration status, [FA3/FA5] signal becomes ON from ("โО4 $/$ /СО 5 " + "Fon") to ("[04ヨ/[046" - "Foff').

There is no [FA3/FA5] between "ONs" in the figure, because frequency arrival output is out of the area defined by the

Fon=1\% of max. frequency Foff $=2 \%$ of max. frequency

Fon=1\% of max. frequency Foff=2\% of max. frequency

Fon=1\% of max. frequency Foff=2\% of max. frequency
sets of parameters.

Alarm Signal

The inverter alarm signal is active when a fault has occurred and it is in the Trip Mode (refer to the diagram at right). When the fault is cleared the alarm signal becomes inactive.

We must make a distinction between the alarm signal AL and the alarm relay contacts [ALO], [AL1] and [AL2]. The signal $A L$ is a logic function, which you can assign to the open collector output terminals [11], [12], or the
 relay outputs.
The most common (and default) use of the relay is for AL, thus the labeling of its terminals. Use an open collector output (terminal [11] or [12]) for a low-current logic signal interface or to energize a small relay (50 mA maximum). Use the relay output to interface to higher voltage and current devices (10 mA minimum).

Option Code	Terminal Symbol	Function Name	State	Description
05	AL	Alarm Signal	ON	when an alarm signal has occurred and has not been cleared
			OFF	when no alarm has occurred since the last clearing of alarm(s)
Valid for inputs:		11, 12, ALO - AL2		Example for terminal [11] (default output configuration shown see page 69):
Required settings		ᄃ03 I, โ0ヨコ, ᄃ036		
Notes: - By default, the relay is configured as normally closed ($[0 \exists 5=0$ I). Refer to the next page for an explanation. - In the default relay configuration, an inverter power loss turns ON the alarm output. the alarm signal remains ON as long as the external control circuit has power. - When the relay output is set to normally closed, a time delay of less than 2 seconds occurs after powerup before the contact is closed.				
				Inverter output terminal circuit

- Terminals [11] and [12] are open collector outputs, so the electric specifications of [AL] are different from the contact output terminals [ALO], [AL1], [AL2].
- This signal output has the delay time (300 ms nominal) from the fault alarm output.
- The relay contact specifications are in "Control Logic Signal Specifications" on page 25. The contact diagrams for different conditions are on the next page.

Example for terminal [ALO], [AL1], [AL2] (requires output configuration see page 69):

See I/O specs on page $24,25$.

The alarm relay output can be configured in two main ways:

- Trip/Power Loss Alarm - The alarm relay is configured as normally closed ([076=0 I) by default, shown below (left). An external alarm circuit that detects broken wiring also as an alarm connects to [ALO] and [AL1]. After powerup and short delay (< 2 seconds), the relay energizes and the alarm circuit is OFF. Then, either an inverter trip event or an inverter power loss will de-energize the relay and open the alarm circuit
- Trip Alarm - Alternatively, you can configure the relay as normally open ([036=00), shown below (right). An external alarm circuit that detects broken wiring also as an alarm connects to [ALO] and [AL2]. After powerup, the relay energizes only when an inverter trip event occurs, opening the alarm circuit. However, in this configuration, an inverter power loss does not open the alarm circuit.

Be sure to use the relay configuration that is appropriate for your system design. Note that the external circuits shown assume that a closed circuit = no alarm condition (so that a broken wire also causes an alarm). However, some systems may require a closed circuit = alarm condition. In that case, then use the opposite terminal [AL1] or [AL2] from the ones shown.

Analog Input Operation

The WJ200 inverters provide for analog input to command the inverter frequency output value. The analog input terminal group includes the [L], [OI], [O], and [H] terminals on the control connector, which provide for Voltage [O] or Current [OI] input. All analog input signals must use the analog ground [L].

If you use either the voltage or current analog input, you must select one of them using the logic input terminal function [AT] analog type. Refer to the table on next page showing the activation of each analog input by combination of ROOS set parameter and [AT] terminal condition. The [AT] terminal function is covered in "Analog Input Current/Voltage Select" in section 4. Remember that you must also set ROD $1=01$ to select analog input as the frequency source.

NOTE: If no logic input terminal is configured for the [AT] function, then inverter recognizes that [AT]=OFF and MCU recognizes [O]+[OI] as analog input.

Using an external potentiometer is a common way to control the inverter output frequency (and a good way to learn how to use the analog inputs). The potentiometer uses the built-in 10V reference $[\mathrm{H}]$ and the analog ground [L] for excitation, and the voltage input [O] for the signal. By default, the [AT] terminal selects the voltage input when it is OFF.
Take care to use the proper resistance for the potentiometer, which is $1 \sim 2 \mathrm{k} \Omega$, 2 Watts.

Voltage Input - The voltage input circuit uses terminals [L] and [O]. Attach the signal cable's shield wire only to terminal [L] on the inverter. Maintain the voltage within specifications (do not apply negative voltage).

Current Input - The current input circuit uses terminals [OI] and [L]. The current comes from a sourcing type transmitter; a sinking type will not work! This means the current must flow into terminal [OI], and terminal [L] is the return back to the transmitter. The input impedance from [OI] to [L] is 100 Ohms. Attach the cable shield wire only to terminal [L] on the inverter.

1 to $2 k \Omega, 2 W$

0 to 9.6 VDC,
0 to 10 V nominal

4 to 19.6 mA DC , 4 to 20 mA nominal

See I/O specs on page $24,25$.

The following table shows the available analog input settings. Parameter 7005 and the input terminal [AT] determine the External Frequency Command input terminals that are available, and how they function. The analog inputs [O] and [OI] use terminal [L] as the reference (signal return).

R005	[AT] Input	Analog Input Configuration
00	ON	[OI]
	OFF	[0]
02	ON	Integrated POT on external panel
	OFF	[O]
09	ON	Integrated POT on external panel
	OFF	[Oi]

Other Analog Input-related topics:

"Analog Input Settings"
"Additional Analog Input Settings"
"Analog Signal Calibration Settings"
"Analog Input Current/Voltage Select"
"ADD Frequency Enable"
"Analog Input Disconnect Detect"

Pulse Train Input Operation

The WJ200 inverter is capable of accepting pulse train input signals, which are used for frequency command, process variable (feedback) for PID control, and simple positioning. The dedicated terminal is called "EA" and "EB". Terminal "EA" is a dedicated terminal, and the terminal "EB" is an intelligent terminal, that has to be changed by a parameter setting.

Terminal Name	Description	Ratings
EA	Pulse train input A	32 kHz max. Reference voltage: Common is [L]
EB		27 Vdc max. (Input terminal 7)
	Pulse train input B (Set CDO7 to 85)	Reference voltage: Common is [PLC]

EA terminates are used for below purposes

(1) Frequency Command by pulse train input

When using this mode, you should set AOD I to 06 . In this case the frequency is detected by input-capture, and calculated based on the ratio of designated max. frequency (under 32 kHz). Only an input terminal "EA" will be used in this case.

(2) Using for process variable of PID control

You can use the pulse train input for process variable (feedback) of PID control. In this case you need to set $月 076$ to 03 . Only "EA" input terminal is to be used.

(3) Simple positioning by pulse train input

This is to use the pulse train input like an encoder signal.
See instruction manual for details

Analog Output Operation

In inverter applications it is useful to monitor the inverter operation from a remote location or from the front panel of an inverter enclosure. In some cases, this requires only a panel-mounted volt meter. In other cases, a controller such as a PLC may provide the inverter's frequency command, and require inverter feedback data (such as output frequency or output current) to confirm actual operation. The analog output terminal [AM] serves these purposes.

See I/O specs on page 24, 25

The inverter provides an analog voltage output on terminal [AM] with terminal [L] as analog GND reference. The [AM] can output inverter frequency or current output value. Note that the voltage range is 0 to +10 V (positive-going only), regardless of forward or reverse motor rotation. Use [02B to configure terminal [AM] as indicated below.

Func.	Code	Description
[02日	00	Inverter output frequency
	01	Inverter output current
	02	Inverter output torque
	03	Digital output freqnency
	04	Inverter output goltage
	05	Inverter input power
	06	Electronic Thermal Load
	07	LAD frequency
	08	Digital current monitor
	10	Cooling fin temperature
	12	General purpose
	15	Pulse train
	16	Option

The [AM] signal offset and gain are adjustable, as indicated below.

Func.	Description	Range	Default
$[106$	$[A M]$ output gain	$0 . \sim 255$.	100.
$[109$	[AM] output offset	$0.0 \sim 10.0$	0.0

The graph below shows the effect of the gain and offset setting. To calibrate the [AM] output for your application (analog meter), follow the steps below:

1. Run the motor at the full scale speed.
a. If the analog meter represents output frequency, adjust offset ([109) first, and then use [105 to set the voltage for full scale output.
b. If [AM] represents motor current, adjust offset ([109) first, and then use b[105 to set the voltage for full scale output. Remember to leave room at the upper end of the range for increased current when the motor is under heavier loads.

AM output offset adjustment

AM output gain adjustment

NOTE: As mentioned above, first adjust the offset, and then adjust the gain. Otherwise the required performance cannot be obtained because of the parallel movement of the offset adjustment.

Monitoring functions

NOTE: Parameters marked with " \checkmark " in A column are accessible even in inverter running.
Parameters marked with $" \checkmark$ " in B column are accessible even in inverter running when in the high level access mode, which means that b031 is set to "10".

* Please change from" 04 (Basic display)" to "00 (Full display)" in parameter b0ヨ7 (Function code display restriction), in case some parameters cannot be displayed.

IMPORTANT

Please be sure to set the motor nameplate data into the appropriate parameters
to ensure proper operation and protection of the motor:

- b012 is the motor overload protection value
- A082 is the motor voltage selection
- H003 is the motor kW capacity
- H004 is the number of motor poles

Please refer to the appropriate pages in this guide and the Instruction Manual for further details.

"d" Function			A	B	Units
Func. Code	Name	Description			
dat 1	Output frequency monitor	Real time display of output frequency to motor from 0.00 to $400.0(580.0)^{41} \mathrm{~Hz}$ If b 163 is set high, output frequency (FODI) can be changed by up/down key with d001 monitoring.	\checkmark	\checkmark	Hz
d002	Output current monitor	Filtered display of output current to motor, range is 0.0 to 655.3 ampere (~ 99.9 ampere for 1.5 kW and less)	-	-	A
d003	Rotation direction monitor	Three different indications: "F"...Forward "ם"...Stop "r"...Reverse	-	-	-
2004	Process variable (PV), PID feedback monitor	Displays the scaled PID process variable (feedback) value (R075 is scale factor), 0.00 to 10000	-	-	\% times constant
2005	Intelligent input terminal status	Displays the state of the intelligent input terminals:	-	-	-

＂d＂Function			A	B	Units
Func． Code	Name	Description			
d006	Intelligent output terminal status	Displays the state of the intelligent output terminals：	－	－	－
d007	Scaled output frequency monitor	Displays the output frequency scaled by the constant in 60日6． Decimal point indicates range： 0 to 3999	\checkmark	\checkmark	Hz times constant
d00日	Actual frequency monitor	Displays the actual frequency，range is $-400(-580)$ to $400(580)^{\cdot 1} \mathrm{~Hz}$	－	－	Hz
d009	Torque command monitor	Displays the torque command，range is -200 ．to 200 ．\％	－	－	\％
d0 10	Torque bias monitor	Displays the torque bias value，range is－200 to 200%	－	－	\％
d0 I2	Output torque monitor	Displays the output torque，range is －200．to 200．\％	－	－	\％
d0 13	Output voltage monitor	Voltage of output to motor， Range is 0.0 to 600.0 V	－	－	V
d0 14	Input power monitor	Displays the input power，range is 0.0 to 999.9 kW	－	－	KW
d0 15	Watt－hour monitor	Displays watt－hour of the inverter， range is 0 to 9999000	－	－	
d0 16	Elapsed RUN time monitor	Displays total time the inverter has been in RUN mode in hours． Range is 0 to 9999 ／ 1000 to 9999 ／ 「100 to 「999（10，000 to 99，900）	－	－	hours
d0 17	Elapsed power－on time monitor	Displays total time the inverter has been powered up in hours． Range is 0 to 9999 ／ 1000 to 9999 ／「 100 to 「999（10，000 to 99，900）	－	－	hours
d0 旧	Heat sink temperature monitor	Temperature of the cooling fin，range is -20 to 150	－	－	${ }^{\circ} \mathrm{C}$
dロट2	Life check monitor	Displays the state of lifetime of electrolytic capacitors on the PWB and cooling fan．	－	－	－
d023	Program counter monitor ［EzSQ］	Range is 0 to 1024	－	－	－
d024	Program number monitor ［EzSQ］	Range is 0 to 9999	－	－	－
d025	$\begin{aligned} & \text { User monitor } 0 \\ & \text { [EzSQ] } \\ & \hline \end{aligned}$	Result of EzSQ execution，range is －2147483647 to 2147483647	－	－	－
d026	$\begin{aligned} & \text { User monitor } 1 \\ & \text { [EzSQ] } \end{aligned}$	Result of EzSQ execution，range is －2147483647 to 2147483647	－	－	－
d027	User monitor 2 ［EzSQ］	Result of EzSQ execution，range is －2147483647 to 2147483647	－	－	－

＂d＂Function			A	B	Units
Func． Code	Name	Description			
d029	Positioning command monitor	Displays the positioning command， range is -268435455 to +268435455	－	－	－
d070	Current position monitor	Displays the current position，range is -268435455 to +268435455	－	－	－
d050	Dual monitor	Displays two different data configured in b 160 and bis 1 ．	－	－	－
d060	Inverter mode monitor	Displays currently selected inverter mode： 1－C．．．IM CT mode 1－u．．．IM VT mode H－1 ．．．IM High frequency mode P．．．PM mode	－	－	－
dD62＊2	Frequency source monitor	0．．．Operator 1－15．．．1－15 Multi－speed 16．．．Jog frequency 旧．．．Modbus communication 19．．．Option 2 $1 .$. Potentiometer（available with OPE－SR or OPE－SRmini） 22．．．Pulse train 23．．．Calculate function output 24．．．EzSQ／ $25 . . .[\mathrm{O}]$ input 26．．．［OI］input／27．．．［O］＋［OI］input	－	－	－
dD63＊2	Run command source monitor	1．．．Control terminal／2．．．Operator 3．．．Modbus network／ 4 ．．．Option	－	－	－
d0日0	Trip counter	Number of trip events， Range is 0 ．to 65530	－	－	events
dOE 1	Trip monitor 1	Displays trip event information：	－	－	－
d0日2	Trip monitor 2	－Output frequency at trip point	－	－	－
d083	Trip monitor 3	－Motor current at trip point －DC bus voltage at trip point	－	－	－
d084	Trip monitor 4	－Cumulative inverter operation time	－	－	－
d085	Trip monitor 5	at trip point －Cumulative power－ON time at trip	－	－	－
d086	Trip monitor 6	point	－	－	－
d090	Warning monitor	Displays the warning code	－	－	－
d 102	DC bus voltage monitor	Voltage of inverter internal DC bus， Range is 0.0 to 999.9 （V）	－	－	V
d103	BRD load ratio monitor	Usage ratio of integrated brake chopper，range is 0.0 to 100.0%	－	－	\％
d $104{ }^{*}$	Electronic thermal monitor	Accumulated value of electronic thermal detection，range is from 0.0 to 100.0%	－	－	\％
$\mathrm{d} 1 \mathrm{O}^{*}$	Analog input O monitor	0 to 1023	－	－	－
d $13{ }^{\text {＋}}$	Analog input Ol monitor	0 to 1023	－	－	－
d 1 河 ${ }^{\text {2 }}$	Pulse train input monitor	0.00 to 99.99 ／100．0［\％］	－	－	－
d $153^{* 2}$	PID deviation monitor	－999 to 9999．［\％］	－	－	－
d 155^{*}	PID output monitor	$\begin{aligned} & 0.00 \text { to } 100.0[\%](\text { RD7 } I=\square 1) \\ & -100 \text {. to } 100.0[\%](\text { RD7 } I=02) \\ & \hline \end{aligned}$	－	－	－

${ }^{*}$ ：Up to 580 Hz for high frequency mode（b171 set to 02）
${ }^{*}$ ：Available from version 3.0
${ }^{*}$ ：$:$ Power cycle is required to reflect a change．
${ }^{*}$ ：Available from version 3.1

Main Profile Parameters

NOTE:. Parameters marked with " \checkmark " in A column are accessible even in inverter running.
Parameters marked with " \checkmark " in B column are accessible even in inverter running when in the high level access mode, which means that b031 is set to "10".

"F" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Unis
F00 1	Output frequency setting	Standard default target frequency that determines constant motor speed, range is 0.0 / start frequency to maximum frequency ($\mathrm{ROD4}$)	\checkmark	\checkmark	0.00	Hz
F002	Acceleration time (1)	Standard default acceleration, range is 0.00 to 3600 sec.	\checkmark	\checkmark	10.00	s
F20こ	$\begin{aligned} & \text { Acceleration time (1), } \\ & 2^{n d} \text { motor } \end{aligned}$		\checkmark	\checkmark	10.00	s
F003	Deceleration time (1)	Standard default deceleration, range is 0.00 to 3600 sec.	\checkmark	\checkmark	10.00	s
F203	$\begin{aligned} & \text { Deceleration time (1), } \\ & 2^{\text {nd }} \text { motor } \end{aligned}$		\checkmark	\checkmark	10.00	s
F004	Keypad RUN key routing	Two options; select codes: 00...Forward © I...Reverse	X	X	00	-

Standard Functions

NOTE：．Parameters marked with＂\checkmark＂in A column are accessible even in inverter running．
Parameters marked with $" \checkmark$＂in B column are accessible even in inverter running when in the high level access mode，which means that b031 is set to＂10＂．

＂A＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
ROD 1	Frequency source	Eight options；select codes 00．．．POT on ext．operator ＊Valid when connecting the	X	x	01	－
A20 1	Frequency source， $2^{\text {nd }}$ motor	－I．．．Control terminal ＊Set to＂01＂when connecting the WJ－VL or External volume via control terminal 02．．．Function F001 setting 03．．．Modbus network input 04．．．Option 06．．．Pulse train input 07．．．via EzSQ 10．．．Calculate function output	X	X	01	－
R002	Run command source	Four options；select codes： －I．．．Control terminal 02．．．Run key on keypad，or	X	X	01	－
AこOट	Run command source， $2^{\text {nd }}$ motor	digital operator 03．．．Modbus network input 04．．．Option	X	X	01	－
8003	Base frequency	Settable from 30 Hz to the maximum frequency（ $\mathrm{HOOL}^{(1)}$	X	x	50.0	Hz
月203	Base frequency， $2^{\text {nd }}$ motor	Settable from 30 Hz to the $2^{\text {nod }}$ maximum frequency（ 月204）2	X	X	50.0	Hz
8004	Maximum frequency	Settable from the base frequency to $400(580)^{4-1} \mathrm{~Hz}$	X	x	50.0	Hz
8204	Maximum frequency， $2^{\text {nd }}$ motor	Settable from the $2^{\text {no }}$ base frequency to $400(580)^{4-1} \mathrm{~Hz}$	X	X	50.0	Hz
R005	［AT］selection	Three options；select codes： 00．．．Select between［O］and ［ Ol ］at［AT］（ $\mathrm{ON}=\mathrm{Ol}$ ， OFF＝O） 02．．．Select between［O］and external POT at［AT］ （ $\mathrm{ON}=\mathrm{POT}, \mathrm{OFF}=\mathrm{O}$ ） 03．．．Select between［OI］and external POT at［AT］ （ $\mathrm{ON}=\mathrm{POT}, \mathrm{OFF}=\mathrm{OI}$ ）	x	x	00	－
RO 11	［O］input active range start frequency	The output frequency corresponding to the analog input range starting point， range is 0.00 to $400.0(580.0)^{* 1}$	X	\checkmark	0.00	Hz

＂A＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
AD I2	［O］input active range end frequency	The output frequency corresponding to the analog input range ending point， range is 0.00 to $400.0(580.0)^{+1}$	X	\checkmark	0.00	Hz
AD 1 1	［O］input active range start voltage	The starting point（offset）for the active analog input range， range is 0 ．to 100 ．	X	\checkmark	0.	\％
AO 14	［O］input active range end voltage	The ending point（offset）for the active analog input range， range is 0 ．to 100 ．	X	\checkmark	100.	\％
AD 15	［O］input start frequency enable	Two options；select codes： 00．．．Use offset（RO 1 I value） － $1 . .$. Use 0Hz	X	\checkmark	01	－
AD I6	Analog input filter	Range $\mathrm{n}=1$ to 31， 1 to 30 ：$\times 2 \mathrm{~ms}$ filter $31: 500 \mathrm{~ms}$ fixed filter with \pm 0.1 kHz hysteresis．	X	\checkmark	8.	Spl．
AD 17	EzSQ function select	Select codes： 00．．．Disable © I．．．Activate by PRG terminal 02．．．Activate always	\checkmark	\checkmark	00	－
AD 19	Multi－speed operation selection	Select codes： 00．．．Binary operation（16 speeds selectable with 4 terminals） － $1 .$. Bit operation（8 speeds selectable with 7 terminals）	X	X	00	－
H020	Multi－speed freq． 0	Defines the first speed of a multi－speed profile，range is 0.00 ／start frequency to $400(580)^{+1} \mathrm{~Hz}$ RO20＝Speed 0 （1st motor）	\checkmark	\checkmark	6.0	Hz
Нこころ	$\begin{aligned} & \text { Multi-speed freq. 0, } \\ & 2^{\text {nd }} \text { motor } \end{aligned}$	Defines the first speed of a multi－speed profile or a 2nd motor，range is 0.00 ／start frequency to $400(580)^{* 1} \mathrm{~Hz}$ H220＝Speed 0 （2nd motor）	\checkmark	\checkmark	6.0	Hz
$\begin{gathered} \text { ROD } 1 \\ \text { to } \\ \text { ROJ5 } \end{gathered}$	Multi－speed freq． 1 to 15 （for both motors）	Defines 15 more speeds， range is 0.00 ／start frequency to $400(580)^{-1} \mathrm{~Hz}$ ． RO2 $\mathrm{I}=$ Speed 1 to RO35＝Speed15	\checkmark	\checkmark	0.0	Hz
A03	Jog frequency	Defines limited speed for jog， range is from start frequency to 9.99 Hz	\checkmark	\checkmark	6.00	Hz

＂A＂Function			A	B	Defaults	
Func． Code	Name	Description			Inital data	Unis
8039	Jog stop mode	Define how end of jog stops the motor；six options： 00．．．Free－run stop （invalid during run） －I．．．Controlled deceleration （invalid during run） D2．．．DC braking to stop （invalid during run） 07．．．Free－run stop （valid during run） （valid during run） 05．．．DC braking to stop （valid during run）	X	\checkmark	04	－
RD4 1	Torque boost select	Two options： 00．．．Manual torque boost	X	X	00	－
А24	Torque boost select， $2^{\text {na }}$ motor		X	X	00	－
АОч2	Manual torque boost value	Can boost starting torque between 0 and 20% above	\checkmark	\checkmark	1.0	\％
АЕЧГ	Manual torque boost value， $2^{\text {nd }}$ motor	range is 0.0 to 20.0%	\checkmark	\checkmark	1.0	\％
R043	Manual torque boost frequency	Sets the frequency of the V / f breakpoint A in graph（top of previous page）for torque	\checkmark	\checkmark	5.0	\％
АЗЧヨ	Manual torque boost frequency， $2^{\text {nd }}$ motor	boost， range is 0.0 to 50.0%	\checkmark	\checkmark	5.0	\％
Аロ44	V／f characteristic curve	Four available V／f curves； 00．．．Constant torque	X	X	00	－
АЗप4	V／f characteristic curve， $2^{\text {nd }}$ motor	－ $1 .$. ．Reduced torque（1．7） 02．．．Free V／F 03．．．Sensorless vector（SLV）	X	X	00	－
A045	V／f gain	Sets voltage gain of the inverter，range is 20 to 100%	\checkmark	\checkmark	100.	\％
月245	V／7f gain，${ }^{\text {nad }}$ motor		\checkmark	\checkmark	100.	\％
月046	Voltage compensation gain for automatic torque boost	Sets voltage compensation gain under automatic torque boost，range is 0 ．to 255 ．	\checkmark	\checkmark	100.	－
АЗЧб	Voltage compensation gain for automatic torque boost， $2^{\text {nd }}$ motor		\checkmark	\checkmark	100.	－
P047	Slip compensation gain for automatic torque boost	Sets slip compensation gain under automatic torque boost， range is 0 ．to 255 ．	\checkmark	\checkmark	100.	－
月247	Slip compensation gain for automatic torque boost， $2^{\text {nd }}$ motor		\checkmark	\checkmark	100.	－

＂A＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
A05 1	DC braking enable	Three options；select codes： 00．．．Disable －I．．．Enable during stop 02．．．Frequency detection	X	\checkmark	00	－
A052	DC braking frequency	The frequency at which DC braking begins， range is from the start frequency（ 60 DL ）to 60 Hz	X	\checkmark	0.5	Hz
7053	DC braking wait time	The delay from the end of controlled deceleration to start of DC braking（motor free runs until DC braking begins）， range is 0.0 to 5.0 sec．	X	\checkmark	0.0	s
H054	DC braking force for deceleration	Level of DC braking force， settable from 0 to 100%	X	\checkmark	50.	\％
H055	DC braking time for deceleration	Sets the duration for DC braking，range is from 0.0 to 60.0 seconds	X	\checkmark	0.5	s
7056	DC braking／edge or level detection for［DB］ input	Two options；select codes： 00．．．Edge detection －I．．．Level detection	X	\checkmark	01	－
A057	DC braking force at start	Level of DC braking force at start，settable from 0 to 100%	X	\checkmark	0.	\％
A05日	DC braking time at start	Sets the duration for DC braking，range is from 0.0 to 60.0 seconds	X	\checkmark	0.0	s
7059	Carrier frequency during DC braking	Carrier frequency of DC braking performance，range is from 2.0 to 15.0 kHz	X	\checkmark	5.0	s
ADE 1	Frequency upper limit	Sets a limit on output frequency less than the maximum frequency（ $\mathrm{ROD4}$ ）． Range is from frequency lower limit（AOEC）to maximum frequency（ROD4）． 0.0 setting is disabled >0.0 setting is enabled	X	\checkmark	0.00	Hz
月こб 1	Frequency upper limit， 2nd motor	Sets a limit on output frequency less than the maximum frequency（ H 204 ）． Range is from frequency lower limit（A262）to maximum frequency（ H 2 OL ）． 0.0 setting is disabled >0.0 setting is enabled	X	\checkmark	0.00	Hz

＂A＂Function			A	B	Defaults	
Func． Code	Name	Description			Initialdata	Unis
A062	Frequency lower limit	Sets a limit on output frequency greater than zero． Range is start frequency （bD日ट）to frequency upper limit（ROE I） 0.0 setting is disabled >0.0 setting is enabled	X	\checkmark	0.00	Hz
A262	Frequency lower limit， 2nd motor	Sets a limit on output frequency greater than zero． Range is start frequency （bD日C）to frequency upper limit（म26 I） 0.0 setting is disabled >0.0 setting is enabled	X	\checkmark	0.00	Hz
$\begin{aligned} & \text { R063 } \\ & \text { R065 } \\ & \text { R067 } \end{aligned}$	Jump freq．（center） 1 to 3	Up to 3 output frequencies can be defined for the output to jump past to avoid motor resonances（center frequency） Range is 0.00 to $400.0(580.0)^{-1} \mathrm{~Hz}$	X	\checkmark	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	Hz
$\begin{aligned} & \text { ADE } \\ & \text { RO66 } \\ & \text { R06 } \end{aligned}$	Jump freq．width （hysteresis） 1 to 3	Defines the distance from the center frequency at which the jump around occurs Range is 0.00 to 10.0 Hz	X	\checkmark	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.50 \end{aligned}$	Hz
月069	Acceleration hold frequency	Sets the frequency to hold acceleration，range is 0.0 to $400.0(580.0)^{* 1} \mathrm{~Hz}$	\mathbf{X}	\checkmark	0.00	Hz
8070	Acceleration hold time	Sets the duration of acceleration hold，range is 0.0 to 60.0 seconds	X	\checkmark	0.0	s
807 1	PID enable	Enables PID function， three option codes： 00．．．PID Disable －I．．．PID Enable 02．．．PID Enable with reverse output	X	\checkmark	00	－
8072	PID proportional gain	Proportional gain has a range of 0.00 to 25.00	\checkmark	\checkmark	1.00	－
807	PID integral time constant	Integral time constant has a range of 0.0 to 3600 seconds	\checkmark	\checkmark	1.0	s
8074	PID derivative time constant	Derivative time constant has a range of 0.00 to 100．0seconds seconds	\checkmark	\checkmark	0.00	s
7075	PV scale conversion	Process Variable（PV），scale factor（multiplier），range of 0.01 to 99.99	\mathbf{X}	\checkmark	1.00	－
7076	PV source	Selects source of Process Variable（PV），option codes： 00．．．［OI］terminal（current in） © $1 .$. ［O］terminal（voltage in） 02．．．Modbus network 03．．．Pulse train input 10．．．Calculate function output	\mathbf{X}	\checkmark	00	－

＂A＂Function			A	B	Defaults	
Func． Code	Name	Description			Inital data	Unis
8077	Reverse PID action	Two option codes： OD．．．PID input $=$ SP－PV © $1 . .$. PID input $=-(S P-P V)$	\mathbf{X}	\checkmark	00	－
ค 7 ר	PID output limit	Sets the limit of PID output as percent of full scale， range is 0.0 to 100.0%	X	\checkmark	0.0	\％
A079	PID feed forward selection	Selects source of feed forward gain，option codes： 00．．．Disabled © I．．．［O］terminal（voltage in） 02．．．［OI］terminal（current in）	X	\checkmark	00	－
ADE 1	AVR function select	Automatic（output）voltage regulation，selects from three type of AVR functions，three option codes：	X	X	02	－
A2日 1	AVR function select， $2^{\text {nd }}$ motor	00．．．AVR enabled II．．．AVR disabled 02．．．AVR enabled except during deceleration	X	X	02	－
月0日2	AVR voltage select	200 V class inverter settings： ．．．．．．200／215／220／230／240	X	X	$\begin{aligned} & 230 / \\ & 400 \end{aligned}$	V
АЕВट	AVR voltage select， $2^{\text {nd }}$ motor	$\begin{aligned} & \text { 400V class inverter settings: } \\ & \text {......380/400/415/440/460/480 } \end{aligned}$	X	X	$\begin{gathered} 230 / \\ 400 \end{gathered}$	V
8083	AVR filter time constant	Define the time constant of the AVR filter，range is 0.000 to 10.00 sec ．	\mathbf{X}	\checkmark	0.300	s
月084	AVR deceleration gain	Gain adjustment of the braking performance，range is 50．to 200．\％	\mathbf{X}	\checkmark	100.	\％
A085	Energy－saving operation mode	Two option codes： 00．．．Normal operation －I．．．Energy－saving operation	\mathbf{X}	X	00	－
А0日6	Energy－saving mode tuning	Range is 0.0 to 100.0 \％．	\checkmark	\checkmark	50.0	\％
8092	Acceleration time（2）	Duration of $2^{\text {nd }}$ segment of acceleration，range is：	\checkmark	\checkmark	10.00	s
А292	Acceleration time (2), $2^{\text {nd }} \text { motor }$		\checkmark	\checkmark	10.00	s
8093	Deceleration time（2）	Duration of $2^{\text {nd }}$ segment of deceleration，range is：	\checkmark	\checkmark	10.00	s
月293	$\begin{aligned} & \text { Deceleration time (2), } \\ & 2^{\text {nd }} \text { motor } \end{aligned}$		\checkmark	\checkmark	10.00	s
R094	Select method to switch to Acc2／Dec2 profile	Three options for switching from 1st to 2nd accel／decel： OD．．．2CH input from terminal	X	X	00	－
月294	Select method to switch to Acc2／Dec2 profile， $2^{\text {nd }}$ motor	－I．．．Transition frequency 记．．．Forward and reverse	X	X	00	－

＂A＂Function			A	B	Defaults	
Func． Code	Name	Description			Inital data	Unis
7095	Acc1 to Acc2 frequency transition point	Output frequency at which Accel1 switches to Accel2， range is 0.00 to $400.0(580.0)^{* 1} \mathrm{~Hz}$	X	X	0.00	Hz
A295	Acc1 to Acc2 frequency transition point， $2^{\text {nd }}$ motor		X	X	0.00	Hz
月096	Dec1 to Dec2 frequency transition point	Output frequency at which Decel1 switches to Decel2， range is 0.00 to $400.0(580.0)^{* 1} \mathrm{~Hz}$	\mathbf{X}	X	0.00	Hz
A296	Dec1 to Dec2 frequency transition point， $2^{\text {nd }}$ motor		\mathbf{X}	X	0.00	Hz
\％097	Acceleration curve selection	Set the characteristic curve of Acc1 and Acc2，five options： 00．．．linear －1．．．S－curve 02．．．U－curve 03．．．Inverse U－curve 04．．．EL S－curve	\mathbf{X}	X	01	－
7098	Deceleration curve selection	Set the characteristic curve of Dec1 and Dec2，options are same as above（RO97）	\mathbf{X}	X	01	－
8 101	［OI］input active range start frequency	The output frequency corresponding to the analog input range starting point， range is 0.00 to $400.0(580.0)^{* 1} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
8 102	［OI］input active range end frequency	The output frequency corresponding to the current input range ending point， range is 0.00 to $400.0(580.0)^{* 1} \mathrm{~Hz}$	\mathbf{X}	\checkmark	0.00	Hz
A 103	［OI］input active range start current	The starting point（offset）for the current input range， range is 0 ．to $100 . \%$	\mathbf{X}	\checkmark	20.	\％
A 104	［OI］input active range end current	The ending point（offset）for the current input range， range is 0 ．to $100 . \%$	\mathbf{X}	\checkmark	100.	\％
A 105	［OI］input start frequency select	Two options；select codes： 00．．．Use offset（8 iO I value） 01 ．．．Use 0Hz	X	\checkmark	00	－
月 Bl	Acceleration curve constant	Range is 01 to 10.	X	\checkmark	02	－
A 1 コ	Deceleration curve constant	Range is 01 to 10.	X	\checkmark	02	－

"A" Function			A	B	Defaults	
Func. Code	Name	Description			Inital data	Units
A 141	A input select for calculate function	Seven options: 00...Operator Q I...POT on ext. Operator *Valid when connecting OPE-SR/SRmini 02...Terminal [O] input 03...Terminal [OI] input 叫...RS485 05...Option 07...Pulse train input	X	\checkmark	02	-
A 142	B input select for calculate function	Seven options: 00...Operator Q I... POT on ext. Operator *Valid when connecting OPE-SR/SRmini 02...Terminal [O] input 03...Terminal [OI] input 叫...RS485 05...Option 07...Pulse train input	X	\checkmark	03	-
A 143	Calculation symbol	Calculates a value based on the A input source (F 141 selects) and B input source (A 142 selects). Three options: DD...ADD (A input + B input) - I...SUB (A input - B input) 02...MUL (A input * B input)	X	\checkmark	00	-
A 145	ADD frequency	An offset value that is applied to the output frequency when the [ADD] terminal is ON. Range is 0.00 to 400.(580.) ${ }^{41} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
A 146	ADD direction select	Two options: 00 ...Plus (adds F 145 value to the output frequency setting) DI...Minus (subtracts 8145 value from the output frequency setting)	X	\checkmark	00	-
A 150	Curvature of EL-S-curve at the start of acceleration	Range is 0 . to $50 . \%$	\mathbf{X}	X	10.	\%
A 151	Curvature of EL-S-curve at the end of acceleration	Range is 0 . to $50 . \%$	X	X	10.	\%
A 152	Curvature of EL-S-curve at the start of deceleration	Range is 0 to 50%	X	x	10.	\%
A 153	Curvature of EL-S-curve at the end of deceleration	Range is 0 . to $50 . \%$	X	x	10.	\%
A 154	Deceleration hold frequency	Sets the frequency to hold deceleration, range is 0.00 to $400.0(580.0)^{* 1} \mathrm{~Hz}$	X	\checkmark	0.00	Hz

"A" Function			A	B	Defaults	
Func. Code	Name	Description			Inital data	Units
A 155	Deceleration hold time	Sets the duration of deceleration hold, range is 0.0 to 60.0 seconds	X	\checkmark	0.0	s
A 156	PID sleep function action threshold	Sets the threshold for the action, set range 0.00 to $400.0(580.0)^{41} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
A 157	PID sleep function action delay time	Sets the delay time for the action, set range 0.0 to 25.5 sec	X	\checkmark	0.0	s
A 161	[VR] input active range start frequency	The output frequency corresponding to the analog input range starting point, range is 0.00 to $400.0(580.0)^{* 10} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
A 162	[VR] input active range end frequency	The output frequency corresponding to the current input range ending point, range is 0.00 to $400.0(580.0)^{+1} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
A163	[VR] input active range start \%	The starting point (offset) for the current input range, range is 0 . to $100 . \%$	X	\checkmark	0.	\%
A 164	[VR] input active range end \%	The ending point (offset) for the current input range, range is 0 . to VR end ratio(\%)	X	\checkmark	100.	\%
A 165	[VR] input start frequency select	Two options; select codes: 00...Use offset (8 IG I value) $01 . .$. Use 0Hz	X	\checkmark	01	-

${ }^{*} 1$: Up to 580 Hz for high frequency mode (b171 set to 02)
${ }^{*}$: Available from version 3.0
*: Power cycle is required to reflect a change.
*4: Available from version 3.1

Fine Tuning Functions

"b" Function			A	B	Defauts	
Func. Code	Name	Description			Initial data	Unis
6001	Restart mode on power failure / under-voltage trip	Select inverter restart method, Five option codes: 00...Alarm output after trip, no automatic restart - $1 .$. Restart at 0 Hz 02...Resume operation after frequency matching 03...Resume previous freq. after freq. matching, then decelerate to stop and display trip info 04...Resume operation after active freq. matching	X	\checkmark	00	-
6002	Allowable under-voltage power failure time	The amount of time a power input under-voltage can occur without tripping the power failure alarm. Range is 0.3 to 25 sec . If under-voltage exists longer than this time, the inverter trips, even if the restart mode is selected.	X	\checkmark	1.0	s
6003	Retry wait time before motor restart	Time delay after under-voltage condition goes away, before the inverter runs motor again. Range is 0.3 to 100 seconds.	X	\checkmark	1.0	s
6004	Instantaneous power failure / under-voltage trip alarm enable	Three option codes: 00...Disable Q1...Enable 02...Disable during stop and decelerates to a stop	X	\checkmark	00	-
6005	Number of restarts on power failure / under-voltage trip events	Two option codes: DO...Restart 16 times © I...Always restart	X	\checkmark	00	-
6007	Restart frequency threshold	Restart the motor from OHz if the frequency becomes less than this set value during the motor is coasting, range is 0.00 to $400(580)^{1-1} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
600日	Restart mode on over voltage / over current trip	Select inverter restart method, Five option codes: 00...Alarm output after trip, no automatic restart $\square 1$...Restart at 0 Hz 02...Resume operation after frequency matching D3...Resume previous freq. after active freq. matching, then decelerate to stop and display trip info 04...Resume operation after active freq. matching	X	\checkmark	00	-
6010	Number of retry on over voltage / over current trip	Range is 1 to 3 times	X	\checkmark	3	times

"b" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Unis
b011	Retry wait time on over voltage / over current trip	Range is 0.3 to 100 sec .	X	\checkmark	1.0	s
6012	Level of electronic thermal	Set a level between 20\% and 100\% of the rated inverter current.	X	\checkmark	Rated current for each inverter model	A
b2 12	Level of electronic thermal, $2^{\text {nd }}$ motor		X	\checkmark		A
6013	Electronic thermal characteristic	Select from three curves, option codes: 00...Reduced torque © I...Constant torque 02...Free setting	X	\checkmark	01	-
62 1	Electronic thermal characteristic, $2^{\text {nd }}$ motor		X	\checkmark	01	-
6015	Free setting electronic thermal \sim freq. 1	Range is 0 to $400(580)^{-1} \mathrm{~Hz}$	X	\checkmark	0.	Hz
6016	Free setting electronic thermal ~current1	Range is 0 to inverter rated current Amps	X	\checkmark	0.00	Amps
6017	Free setting electronic thermal ~freq. 2	Range is 0 to $400(580){ }^{-1} \mathrm{~Hz}$	X	\checkmark	0.	Hz
601日	Free setting electronic thermal ~current2	Range is 0 to inverter rated current Amps	X	\checkmark	0.00	Amps
6019	Free setting electronic thermal ~freq. 3	Range is 0 to $400(580)^{-1} \mathrm{~Hz}$	X	\checkmark	0.	Hz
6020	Free setting electronic thermal ~current3	Range is 0 to inverter rated current Amps	X	\checkmark	0.00	Amps
6021	Overload restriction operation mode	Select the operation mode during overload conditions, four options, option codes: 00...Disabled - I...Enabled for acceleration and constant speed 02...Enabled for constant speed only [7...Enabled for acceleration and constant speed, increase speed at regen.	X	\checkmark	01	-
b22 1	Overload restriction operation mode, $2^{\text {nd }}$ motor		X	\checkmark	01	-
6022	Overload restriction level	Sets the level of overload restriction, between 20% and 200% of the rated current of the inverter, setting resolution is 1% of rated current	X	\checkmark	Rated current $\times 1.5$	Amps
Ьวこᄅ	Overload restriction level, $2^{\text {nd }}$ motor		X	\checkmark	Rated current $\times 1.5$	Amps
6023	Deceleration rate at overload restriction	Sets the deceleration rate when inverter detects overload, range is 0.1 to 3000.0, resolution 0.1	X	\checkmark	1.0	s
-	Deceleration rate at overload restriction, $2^{\text {nd }}$ motor		X	\checkmark	1.0	s

		"b" Function	A	B	Defaults	
Func. Code	Name	Description			Initial data	Unis
b024	Overload restriction operation mode 2	Select the operation mode during overload conditions, four options, option codes: 00...Disabled - I...Enabled for acceleration and constant speed 02...Enabled for constant speed only 昀...Enabled for acceleration and constant speed, increase speed at regen.	X	\checkmark	01	-
6025	Overload restriction level 2	Sets the level of overload restriction, between 20% and 200% of the rated current of the inverter, setting resolution is 1% of rated current	X	\checkmark	Rated current $\times 1.5$	\%
6026	Deceleration rate 2 at overload restriction	Sets the deceleration rate when inverter detects overload, range is 0.1 to 3000.0, resolution 0.1	X	\checkmark	1.0	s
6027	OC suppression selection	Two option codes: 00...Disabled -1...Enabled without voltage reduction 02...Enable with voltage reduction	X	\checkmark	00	-
602日	Current level of active freq. matching	Sets the current level of active freq. matching restart, range is 0.1 *inverter rated current to 2.0*inverter rated current, resolution 0.1	X	\checkmark	Rated current	A
6029	Deceleration rate of active freq. matching	Sets the deceleration rate when active freq. matching restart, range is 0.1 to 3000.0 , resolution 0.1	X	\checkmark	0.5	s
6030	Start freq. of active freq. matching	Three option codes: 00...freq at previous shutoff - I...start from max. Hz 02...start from set frequency	X	\checkmark	00	-
6031	Software lock mode selection	Prevents parameter changes, in five options, option codes: 00...all parameters except b03। are locked when [SFT] terminal is ON © I...all parameters except $60 \mathcal{I}$ I and output frequency FOD I are locked when [SFT] terminal is ON 02...all parameters except b0ㅋ I are locked 03...all parameters except 6 ㅇㅋ I and output frequency FOD I are locked 10...High level access including b0ㅋ See the row "Run Mode Edit" for the accessible parameters in this mode-	X	\checkmark	01	-
$603 \exists$	Motor cable length parameter	Set range is 5 . to 20.	\checkmark	\checkmark	10.	-
6034	Run/power ON warning time	```Range is, 0.:Warning disabled I. to 9999.: 10 to 99,990 hrs (unit: 10) 1000 to 6553: 100,000 to 655,350 hrs (unit: 100)```	X	\checkmark	0.	Hrs.
6035	Rotation direction restriction	Three option codes: 00...No restriction - I...Reverse rotation is restricted 02...Forward rotation is restricted	X	X	00	-
6036	Reduced voltage start selection	Set range, 0 (disabling the function), 1 (approx. 6 ms) to 255 (approx. 1.5s)	X	\checkmark	2	-

"b" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Units
6037	Function code display restriction	Six option codes: 00...Full display - I...Function-specific display Q2...User setting (and b037) 03...Data comparison display 叫...Basic display 05...Monitor display only	X	\checkmark	00	-
6038	Initial display selection	000 ...Initial display selection by SET key. 00 I to 070 ... d 00 I to d 070 displayed $201 .$. FOO I displayed 202...B display of LCD operator	X	\checkmark	001	-
6039	Automatic user parameter registration	Two option codes: 00...Disable 01...Enable	X	\checkmark	00	-
6040	Torque limit selection	Three option codes: 00...Quadrant-specific setting mode - I...Terminal-switching mode 02...Analog voltage input mode(O)	X	\checkmark	00	-
6041	Torque limit 1 (fwd/power)	Torque limit level in forward powering quadrant, range is 0 . to $200 . \% / \mathrm{no}$ (disabled)	X	\checkmark	200.	\%
6042	Torque limit 2 (rev/regen.)	Torque limit level in reverse powering quadrant, range is 0 . to $200 . \% / \mathrm{no}$ (disabled)	X	\checkmark	200.	\%
6043	Torque limit 3 (rev/power)	Torque limit level in reverse powering quadrant, range is 0 . to $200 . \% / \mathrm{no}$ (disabled)	X	\checkmark	200.	\%
6044	Torque limit 4 (fwd/regen.)	Torque limit level in forward regen. quadrant, range is 0 . to $200 . \% / \mathrm{no}$ (disabled)	X	\checkmark	200.	\%
6045	Torque LAD STOP selection	Two option codes: 00...Disable - I...Enable	X	\checkmark	00	-
6046	Reverse run protection	Two option codes: 00...No protection Q I...Reverse rotation is protected	X	\checkmark	00	-
6049	Dual Rating Selection	00... (CT mode) / I I... (VT mode)	X	X	00	-
6050	Controlled deceleration on power loss	Four option codes: 00...Trips व1...Decelerates to a stop 02...Decelerates to a stop with DC bus voltage controlled ㅁ....Decelerates to a stop with DC bus voltage controlled, then restart	X	X	00	-
6051	DC bus voltage trigger level of ctrl. decel.	Setting of DC bus voltage to start controlled decel. operation. Range is 0.0 to 1000.0	X	X	$\begin{aligned} & 220.0 / \\ & 440.0 \end{aligned}$	V
6052	Over-voltage threshold of ctrl. decel.	Setting the OV-LAD stop level of controlled decel. operation. Range is 0.0 to 1000.0	X	X	$\begin{aligned} & 360.0 / \\ & 720.0 \end{aligned}$	V
6053	Deceleration time of ctrl. decel.	Range is 0.01 to 3600.0	X	X	1.00	s
6054	Initial freq. drop of ctrl. decel.	Setting of initial freq. drop. Range is 0.00 to 10.00 Hz	X	X	0.00	Hz
6060	Maximum-limit level of window comparator (O)	Set range, \{Min.-limit level (bDE I) + hysteresis width (b062)x2\} to 100 \% (Minimum of 0\%)	\checkmark	\checkmark	100.	\%

＂b＂Function			A	B	Defaults	
Func． Code	Name	Description			Inital data	Unis
b06 1	Minimum－limit level of window comparator（O）	Set range， 0 to \｛Max．－limit level（b060）－ hysteresis width（b062）x2\} \% (Maximum of 0\%)	\checkmark	\checkmark	0.	\％
6062	Hysteresis width of window comparator（O）	Set range， 0 to \｛Max．－limit level（b060）－ Min．－limit level（bDE I）\}/2 \% (Maximum of 10\%)	\checkmark	\checkmark	0.	\％
6063	Maximum－limit level of window comparator（OI）	Set range，\｛Min．－limit level（b064＋hysteresis width（b065）x2\} to 100 \％ （Minimum of 0\％）	\checkmark	\checkmark	100.	\％
6064	Minimum－limit level of window comparator（OI）	Set range， 0 to \｛Max．－limit level（b06］）－ hysteresis width（b065）x2\} \% (Maximum of 0\%)	\checkmark	\checkmark	0.	\％
6065	Hysteresis width of window comparator（OI）	Set range， 0 to \｛Max．－limit level（6063）－ Min．－limit level（bDE4）\}/2 \% (Maximum of 10\%)	\checkmark	\checkmark	0.	\％
6070	Operation level at O disconnection	Set range，0．to 100．\％，or＂no＂（ignore）	X	\checkmark	no	－
6071	Operation level at Ol disconnection	Set range，0．to 100．\％，or＂no＂（ignore）	X	\checkmark	no	－
6075	Ambient temperature setting	$\begin{array}{\|l} \hline \text { Set range is, } \\ -10 \text { to } 50^{\circ} \mathrm{C} \end{array}$	\checkmark	\checkmark	40	${ }^{\circ} \mathrm{C}$
6078	Watt－hour clearance	Two option codes： 00．．．OFF © I．．．ON（press STR then clear）	\checkmark	\checkmark	00	－
6079	Watt－hour display gain	Set range is， 1．to 1000.	\checkmark	\checkmark	1.	－
60日2	Start frequency	Sets the starting frequency for the inverter output，range is 0.10 to 9.99 Hz	X	\checkmark	0.50	Hz
6083	Carrier frequency	Sets the PWM carrier（internal switching frequency），range is 2.0 to 15.0 kHz	X	\checkmark	10.0	kHz
6084	Initialization mode （parameters or trip history）	Select initialized data，five option codes： 00．．．Initialization disabled 0 1．．．Clears Trip history 02．．．Initializes all Parameters 03．．．Clears Trip history and initializes all parameters 04．．．Clears Trip history and initializes all parameters and EzSQ program	X	X	00	－
6085	Country for initialization	－I．．．Mode 1	X	X	01	－
60日6	Frequency scaling conversion factor	Specify a constant to scale the displayed frequency for $d \square 07$ monitor，range is 0.01 to 99.99	\checkmark	\checkmark	1.00	－
6087	STOP key enable	Select whether the STOP key on the keypad is enabled，three option codes： 00．．．Enabled －1．．．Disabled always 02．．．Disabled for stop	X	\checkmark	00	－
608日	Restart mode after FRS	Selects how the inverter resumes operation when free－run stop（FRS）is cancelled，three options： 00．．．Restart from 0Hz －I．．．Restart from frequency detected from real speed of motor（freq．matching） 02．．．Restart from frequency detected from real speed of motor（active freq．matching）	X	\checkmark	00	－

"b" Function			A	B	Default	
Func. Code	Name	Description			Initial data	Unis
6089	Automatic carrier frequency reduction	Three option codes: 00...Disabled © $1 .$. Enabled, depending on the output current 02...Enabled, depending on the heat-sink temperature	X	X	01	-
6090	Dynamic braking usage ratio	Selects the rate of use (in \%) of the regenerative braking resistor per 100 sec . intervals, range is 0.0 to 100%. 0% : Function disabled $>0 \%$: Enabled, per value	X	\checkmark	0.0	\%
6091	Stop mode selection	Select how the inverter stops the motor, two option codes: 00...DEC (decelerate to stop) © I...FRS (free-run to stop)	X	\checkmark	00	-
6092	Cooling fan control	Selects when the fan is ON during inverter operation, three options: 00...Fan is always ON 01 ...Fan is ON during run, OFF during stop (5 minute delay from ON to OFF) 02...Fan is temperature controlled	X	\checkmark	01	-
6093	Clear elapsed time of cooling fan	Two option codes: 00...Count D I...Clear	X	X	00	-
6094	Initialization target data	Select initialized parameters, four option codes: 00...All parameters © I...All parameters except in/output terminals and communication. 02...Only registered parameters in $\cup x x x$. 07...All parameters except registered parameters in $U x x x$ and 6097 .	X	X	00	-
6095	Dynamic braking control (BRD) selection	Three option codes: 00...Disable © 1 ...Enable during run only 02...Enable always	X	\checkmark	00	-
6096	BRD activation level	(Ver. 3.0 or before) Range is: 330 to 380 V (200V class) 660 to 760 V (400V class) (Ver. 3.1 or after) Range is: 330 to 390 V (200V class) 660 to 780 V (400 V class)	X	\checkmark	$\begin{aligned} & 360 / \\ & 720 \end{aligned}$	V
6097	BRD resistor value	Min. Resistance to 600.0	X	\checkmark	Min. Resistance	Ohm
b 100	Free V/F setting, freq. 1	Set range, 0 to value of b 102	X	X	0.	Hz
6101	Free V/F setting, voltage. 1	Set range, 0 to 800V	X	X	0.0	V
-102	Free V/F setting, freq. 2	Set range, value of b 100 to b 104	X	X	0.	Hz
¢ 103	Free V/F setting, voltage. 2	Set range, 0 to 800 V	X	X	0.0	V
b 104	Free V/F setting, freq. 3	Set range, value of bl02 to blics	X	X	0.	Hz

＂b＂Function			A	B	Defaults	
Func． Code	Name	Description			Iniial data	Units
b 105	Free V／F setting， voltage． 3	Set range， 0 to 800V	X	X	0.0	V
b IO6	Free V／F setting， freq． 4	Set range，value of b 104 to b108	X	X	0.	Hz
6107	Free V／F setting， voltage． 4	Set range， 0 to 800 V	X	X	0.0	V
6108	Free V／F setting， freq． 5	Set range，value of blice to bllo	X	X	0.	Hz
6109	Free V／F setting， voltage． 5	Set range， 0 to 800 V	X	X	0.0	V
b110	Free V／F setting， freq． 6	Set range，value of blice to blil	X	X	0.	Hz
b 111	Free V／F setting， voltage． 6	Set range， 0 to 800V	X	x	0.0	V
b 112	Free V／F setting， freq． 7	Set range，b 110 to 400（580）＊＊	X	X	0.	Hz
61日	Free V／F setting， voltage． 7	Set range， 0 to 800V	X	X	0.0	V
b 120	Brake control enable	Two option codes： 00．．．Disable －I．．．P012＝00：Enable／ P012＝02：Enable with DC breaking at positioning end 02．．．P012＝00：Enable／ P012＝02：Enable without DC breaking at positioning end	X	\checkmark	00	－
b121	Brake Wait Time for Release	Set range： 0.00 to 5.00 sec	X	\checkmark	0.00	s
¢ 122	Brake Wait Time for Acceleration	Set range： 0.00 to 5.00 sec	X	\checkmark	0.00	s
¢ 123	Brake Wait Time for Stopping	Set range： 0.00 to 5.00 sec	X	\checkmark	0.00	s
6124	Brake Wait Time for Confirmation	Set range： 0.00 to 5.00 sec	X	\checkmark	0.00	s
b 125	Brake release freq．	Set range： 0.00 to $400.0(580.0)^{+1} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
¢ 126	Brake release current	Set range： 0.00 to 200% of inverter rated current	X	\checkmark	Rated current	A
b 127	Braking freq． setting	Set range： 0.00 to $400.0(580.0)^{\top+} \mathrm{Hz}$	X	\checkmark	0.00	Hz
b 1 30	Deceleration overvoltage suppression enable	00．．．Disabled $01 .$. Enabled 02．．．Enabled with accel．	X	\checkmark	00	－
	Decel．overvolt． suppress level	DC bus voltage of suppression．Range is： 200V class．．． 330 to 395 400 V class．．． 660 to 790	X	\checkmark	$\begin{aligned} & 380 \\ & 1760 \end{aligned}$	V
¢ 屺	Decel．overvolt． suppress const．	Accel．rate when b $190=02$ ． Set range： 0.10 to 30.00 sec ．	X	\checkmark	1.00	s
¢旧	Decel．overvolt． suppress proportional gain	Proportional gain when b $1 \mathrm{BO}=0 \mathrm{I}$ ．Range is： 0.00 to 5.00	\checkmark	\checkmark	0.20	－

"b" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Units
6134	Decel. overvolt. suppress integral time	Integration time when $\mathrm{b} 130=01$. Range is: 0.0 to 150.0	\checkmark	\checkmark	1.0	S
b 145	GS input mode	Two option codes: DO...No trip (Hardware shutoff only) 0 I... Trip (E37) $02^{* 4} \ldots$ Trip (E98/E99) or hardware shutoff (-S--) $0 \exists^{* 4} \ldots$ Trip (E99) or hardware shutoff (-S--) $04^{* 4} \ldots$ No trip, Hardware shutoff (-S--) $05^{* 4}$...Trip (E99) or hardware shutoff (F01/F02/F10/F20/-S--) $76^{*} \ldots$...No trip, hardware shutoff (F01/F02/F10/F20/-S--)	X	\checkmark	00	-
6.1464	Delay time of release operation	Valid only when b $145=05$. Range is: 0.00 to 2.00 sec	X	\checkmark	0.00	S
6 147*	Special monitor display cancellation	Two option codes: 00...cancellation disable Q I...cancellation enable	X	\checkmark	01	-
6 148*	Special monitor display re-display time	Set range: 1. to 30. sec	\mathbf{X}	\checkmark	30.	S
b 150	Display ex.operator connected	When an external operator is connected via RS-422 port, the built-in display is locked and shows only one "d" parameter configured in: d00 I to d030	\checkmark	\checkmark	001	-
6160	1st parameter of Dual Monitor	Set any two "d" parameters in b 160 and b 16 I, then they can be monitored in $\mathbf{d 0 5 0}$. The two	\checkmark	\checkmark	001	-
bI61	2nd parameter of Dual Monitor	parameters are switched by up/down keys. Set range: d 0 O 1 to $\mathrm{dO} \exists \mathrm{O}$	\checkmark	\checkmark	002	-
b163	Frequency set in monitoring	Two option codes: 00...Freq. set disabled Q I...Freq. set enabled	\checkmark	\checkmark	00	-
b 164	Automatic return to the initial display	10 min . after the last key operation, display returns to the initial parameter set by b0ㅋ. Two option codes: 00...Disable Q I...Enable	\checkmark	\checkmark	00	-
b 165	Ex. operator com. loss action	Five option codes: 00...Trip Q I... Trip after deceleration to a stop 02...Ignore 扫...Coasting (FRS) 叫...Decelerates to a stop	\checkmark	\checkmark	02	-
b 165	Data Read/Write select	00... Read/Write OK Q I... Protected	X	\checkmark	00	-
6171	Inverter mode selection	Three option codes: 00...No function Q1...Std. IM (Induction Motor) 02... High frequency induction motor 03...PM (Permanent Magnet Motor)	X	X	00	-
6 180	Initialization trigger	This is to perform initialization by parameter input with 6084, b085 and 6094. Two option codes: 00...Initialization disable 0 I...Perform initialization	X	X	00	-

"b" Function

Func. Code	Name	Description	A	B	Inital data	Unis
b 190	Password Settings A	0000(Invalid Password) 0001-FFFF(Password)	X	X	0000	-
6191	Password authentication A	0000-FFFF	X	X	0000	-
6192	Password Settings B	0000(Invalid Password) 0001-FFFF(Password)	X	X	0000	-
6193	Password authentication B	0000-FFFF	\times	X	0000	-
$6910{ }^{*}$	Electronic thermal subtraction function selection	00...OFF © I...Linear subtraction: pre-fixed ratio 02...Linear subtraction: ratio set in b911 07...Subtraction with first-order lag filter: ratio set in 69 lz	X	\checkmark	03	-
6911^{2}	Thermal subtraction time	0.10 to 100000.00 [s] (upper four digits are shown)	X	\checkmark	600.0	s
$6912{ }^{2}$	Thermal subtraction time constant	0.10 to 100000.00 [s] (upper four digits are shown)	X	\checkmark	120.00	s
$6913^{* 2}$	Thermal accumulation gain	1.0 to 200.0 [\%]	X	\checkmark	100.0	\%

${ }^{*}$: Up to 580 Hz for high frequency mode (b171 set to 02)
${ }^{*}$: Available from version 3.0
*: Power cycle is required to reflect a change.
*4: Available from version 3.1

Intelligent Terminal Functions

"C" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Units
C00 1	Input [1] function	Select input terminal [1] function, 68 options (see next section)	X	\checkmark	$\begin{gathered} \hline 00 \\ {[F W]} \end{gathered}$	-
c002	Input [2] function	Select input terminal [2] function, 68 options (see next section)	X	\checkmark	$\begin{gathered} 01 \\ {[\mathrm{RV}]} \end{gathered}$	-
$[003$	Input [3] function [GS1 assignable]	Select input terminal [3] function, 68 options (see next section)	X	\checkmark	$\begin{gathered} 12 \\ {[E X T]} \\ \hline \end{gathered}$	-
C004	$\begin{aligned} & \text { Input [4] function } \\ & \text { [GS2 assignable] } \end{aligned}$	Select input terminal [4] function, 68 options (see next section)	X	\checkmark	$\begin{gathered} 18 \\ \text { [RS] } \\ \hline \end{gathered}$	-
C005	Input [5] function [PTC assignable]	Select input terminal [5] function, 68 options (see next section)	X	\checkmark	$\begin{gathered} 02 \\ \text { [CF1] } \end{gathered}$	-
C006	Input [6] function	Select input terminal [6] function, 68 options (see next section)	X	\checkmark	$\begin{gathered} 03 \\ {[\mathrm{CF} 2]} \\ \hline \end{gathered}$	-
C007	Input [7] function	Select input terminal [7] function, 68 options (see next section)	X	\checkmark	$\begin{gathered} 06 \\ {[\mathrm{JG}]} \end{gathered}$	-
C011	Input [1] active state	Select logic conversion, two option codes:	X	\checkmark	00	-
C012	Input [2] active state	01 normally closed [NC]	X	\checkmark	00	-
[01]	Input [3] active state		X	\checkmark	00	-
[014	Input [4] active state		X	\checkmark	00	-
C015	Input [5] active state		X	\checkmark	00	-
[016	Input [6] active state		X	\checkmark	00	-
[017	Input [7] active state		X	\checkmark	00	-
[02 1	Output [11] function [EDM assignable]	48 programmable functions available for logic (discrete) outputs	X	\checkmark	$\begin{gathered} 00 \\ {[\mathrm{RUN}]} \end{gathered}$	-
c02z	Output [12] function		X	\checkmark	$\begin{gathered} 01 \\ \text { [FA1] } \\ \hline \end{gathered}$	-
[026	Alarm relay function	48 programmable functions available for logic (discrete) outputs (see next section)	X	\checkmark	$\begin{gathered} 05 \\ {[\mathrm{AL}]} \end{gathered}$	-
[027	[EO] terminal selection (Pulse/PWM output)	13 programmable functions: 00...Output frequency (PWM) - I...Output current (PWM) 02...Output torque (PWM) 03...Output frequency (Pulse train) 04...Output voltage (PWM) 05...Input power (PWM) 06...Electronic thermal load ratio (PWM) 07...LAD frequency (PWM) 0日...Output current (Pulse train) 10...Heat sink temperature (PWM) 12...General output (PWM) 15...Pulse train input monitor 16...Option(PWM)	X	\checkmark	07	-

"C" Function			A	B	Defaults	
Func. Code	Name	Description			$\begin{aligned} & \hline \text { nitial } \\ & \text { data } \end{aligned}$	Units
[02日	[AM] terminal selection (Analog voltage output 0...10V)	11 programmable functions: 00...Output frequency - 1 ...Output current 02...Output torque 04...Output voltage 05...Input power 06...Electronic thermal load ratio 07...LAD frequency 10...Heat sink temperature 11...Output torque (with code) 1 1 ...General output I6...Option	X	\checkmark	$\begin{gathered} 07 \\ {[L A D]} \end{gathered}$	-
[030	Digital current monitor reference value	Current with digital current monitor output at $1,440 \mathrm{~Hz}$ Range is $20 \% \sim 200 \%$ of rated current	\checkmark	\checkmark	Rated current	A
[031	Output [11] active state	Select logic conversion, two option codes:	x	\checkmark	00	-
[032	Output [12] active state		\times	\checkmark	00	-
[036	Alarm relay active state		X	\checkmark	01	-
[03	Output mode of low current detection	Two option codes: 00...During acceleration, deceleration and constant speed D $1 .$. During constant speed only	X	\checkmark	01	-
$[039$	Low current detection level	Set the level of low load detection, range is 0.0 to 2.0 * inverter rated current	\checkmark	\checkmark	Rated current	A
[040	Output mode of overload warning	Two option codes: 00...During accel., decel. and constant speed D I...During constant speed only	X	\checkmark	01	-
[041]	Overload warning level	Sets the overload warning signal level between 0\% and 200\% (from 0 to two time the rated current of the inverter)	\checkmark	\checkmark	Rated current $\times 1.15$	A
[241	Overload warning level, $2^{\text {nad }}$ motor		\checkmark	\checkmark	Rated current $\times 1.15$	A
[042	Frequency arrival setting for acceleration	Sets the frequency arrival setting threshold for the output frequency during acceleration, range is 0.0 to $400.0(580.0)^{* 1} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
[04]	Frequency arrival setting for deceleration	Sets the frequency arrival setting threshold for the output frequency during deceleration, range is 0.0 to $400.0(580.0)^{* 1} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
[044	PID deviation level	Sets the allowable PID loop error magnitude (absolute value), SP-PV, range is 0.0 to 100%	X	\checkmark	3.0	\%
[045	Frequency arrival setting 2 for acceleration	Set range is 0.0 to $400.0(580.0){ }^{4} \mathrm{~Hz}$	x	\checkmark	0.00	Hz
[045	Frequency arrival setting 2 for deceleration	Set range is 0.0 to $400.0(580.0){ }^{7} \mathrm{~Hz}$	X	\checkmark	0.00	Hz
[047	Pulse train input/output scale conversion	If EO terminal is configured as pulse train input (CD27=15), scale conversion is set in [047. Pulse-out $=$ Pulse-in \times (CD47) Set range is 0.01 to 99.99	\checkmark	\checkmark	1.00	-

"C" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Units
[052	PID FBV output high limit	When the PV exceeds this value, the PID loop turns OFF the PID second stage output, range is 0.0 to 100%	X	\checkmark	100.0	\%
[05]	PID FBV output low limit	When the PV goes below this value, the PID loop turns ON the PID second stage output, range is 0.0 to 100%	X	\checkmark	0.0	\%
$[054$	Over-torque/under-torque selection	Two option codes: 00...Over-torque D I...Under-torque	X	\checkmark	00	-
$[055$	Over/under-torque level (Forward powering mode)	Set range is 0 . to 200.\%	X	\checkmark	100.	\%
[056	Over/under-torque level (Reverse regen. mode)	Set range is 0. to 200.\%	X	\checkmark	100.	\%
[057	Over/under-torque level (Reverse powering mode)	Set range is 0. to 200.\%	X	\checkmark	100.	\%
[05日	Over/under-torque level (Forward regen. mode)	Set range is 0. to 200.\%	X	\checkmark	100.	\%
[059	Signal output mode of Over/under-torque	Two option codes: 00...During accel., decel. and constant speed Q $1 .$. During constant speed only	X	\checkmark	01	-
[061	Electronic thermal warning level	Set range is 0 to 100% Setting 0 means disabled.	x	\checkmark	90.	\%
[06]	Zero speed detection level	Set range is 0.00 to 100.0 Hz	X	\checkmark	0.00	Hz
[064	Heat sink overheat warning	Set range is 0. to $110 .{ }^{\circ} \mathrm{C}$	X	\checkmark	100.	${ }^{\circ} \mathrm{C}$
[07 13	Communication speed	Eight option codes: 03...2,400 bps 04...4,800 bps 05...9,600 bps 06...19,200 bps 07...38,400 bps 㫜...57,600 bps 09...76,800 bps 10...115,200 bps	X	\checkmark	05	baud
[072	Modbus address	Set the address of the inverter on the network. Range is 1 to 247	X	\checkmark	1.	-
[074*3	Communication parity	Three option codes: 00...No parity - 1...Even parity 02...Odd parity	X	\checkmark	00	-
[075*3	Communication stop bit	Two option codes: l... 1 bit 2... 2 bit	X	\checkmark	1	bit
5076	Communication error select	Selects inverter response to communications error. Five options: 00...Trip © 1...Decelerate to a stop and trip 02...Disable 07...Free run stop (coasting) D4...Decelerates to a stop	X	\checkmark	02	-
[077	Communication error time-out	Sets the communications watchdog timer period. Range is 0.00 to 99.99 sec $0.0=\text { disabled }$	X	\checkmark	0.00	s

"C" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Units
[078	Communication wait time	Time the inverter waits after receiving a message before it transmits. Range is 0 . to 1000 . ms	X	\checkmark	0.	ms
[08 1	O input span calibration	Scale factor between the external frequency command on terminals L-O (voltage input) and the frequency output, range is 0.0 to 200.0%	\checkmark	\checkmark	100.0	\%
[082	Ol input span calibration	Scale factor between the external frequency command on terminals L-OI (voltage input) and the frequency output, range is 0.0 to 200.0%	\checkmark	\checkmark	100.0	\%
[085	Thermistor input (PTC) span calibration	Scale factor of PTC input. Range is 0.0 to 200.0%	\checkmark	\checkmark	100.0	\%
[09 1	Debug mode enable	Displays debug parameters. Two option codes: 00...Disable © I...Enable <Do not set> (for factory use)	\checkmark	\checkmark	00	-
[096*3	Communication selection	DO...Modbus-RTU - I... EzCOM 02... EzCOM<administrator>	X	X	00	-
[098*3	EzCOM start adr. of master	1 to 8	\times	X	1.	-
[099*3	EzCOM end adr. of master	1 to 8	\times	X	1.	-
[100*3	EzCOM starting trigger	00... Input terminal I I... Always	X	X	00	-
[101	Up/Down memory mode selection	Controls speed setpoint for the inverter after power cycle. Two option codes: 00 ...Clear last frequency (return to default frequency FDO I) - $1 .$. Keep last frequency adjusted by UP/DWN	X	\checkmark	00	-
[102	Reset selection	Determines response to Reset input [RS]. Four option codes: $00 . . . C a n c e l$ trip state at input signal ON transition, stops inverter if in Run Mode - 1 ...Cancel trip state at signal OFF transition, stops inverter if in Run Mode 02...Cancel trip state at input ON transition, no effect if in Run Mode 03...Clear the memories only related to trip status	\checkmark	\checkmark	00	-
[10]	Restart mode after reset	Determines the restart mode after reset is given, three option codes: 00 ...Start with 0 Hz © I...Start with freq. matching 02...Start with active freq. matching	X	\checkmark	00	-
[104	UP/DWN clear mode	Freq. set value when UDC signal is given to the input terminal, two option codes: $00 . .0 \mathrm{~Hz}$ © I...Original setting (in the EEPROM memory at power on)	X	\checkmark	00	-
[105	EO gain adjustment	Set range is 50 . to $200 . \%$	\checkmark	\checkmark	100.	\%

＂C＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
［106	AM gain adjustment	Set range is 50 ．to $200 . \%$	\checkmark	\checkmark	100.	\％
［109	AM bias adjustment	Set range is 0 ．to $100 . \%$	\checkmark	\checkmark	0.	\％
［111	Overload warning level 2	Sets the overload warning signal level between 0\％and 200\％（from 0 to two time the rated current of the inverter）	\checkmark	\checkmark	Rated current $\times 1.15$	A
［170	Output［11］on delay	Set range is 0.0 to 100.0 sec ．	X	\checkmark	0.0	s
「ヨ1	Output［11］off delay		\times	\checkmark	0.0	s
ᄃ 1 3	Output［12］on delay	Set range is 0.0 to 100.0 sec ．	\mathbf{X}	\checkmark	0.0	s
「羽	Output［12］off delay		\mathbf{X}	\checkmark	0.0	s
［140	Relay output on delay	Set range is 0.0 to 100.0 sec ．	\times	\checkmark	0.0	s
［141	Relay output off delay		\mathbf{X}	\checkmark	0.0	s
［142	Logic output 1 operand A	All the programmable functions available	X	\checkmark	00	－
［ 143	Logic output 1 operand B	for logic（discrete）outputs except LOG1 to LOG3，OPO，no	X	\checkmark	00	－
［144	Logic output 1 operator	Applies a logic function to calculate［LOG］ output state， Three options： 00．．．［LOG］＝A AND B －1．．．［LOG］＝A OR B 02．．．［LOG］＝A XOR B	X	\checkmark	00	－
［ 145	Logic output 2 operand A	All the programmable functions available	X	\checkmark	00	－
［ 146	Logic output 2 operand B	LOG3, OPO, no	X	\checkmark	00	－
［ 147	Logic output 2 operator	Applies a logic function to calculate［LOG］ output state， Three options： 00．．．［LOG］＝A AND B © 1．．．［LOG］＝A OR B Q2．．．［LOG］＝A XOR B	X	\checkmark	00	－
ᄃ14日	Logic output 3 operand A	All the programmable functions available	\times	\checkmark	00	－
［ 149	Logic output 3 operand B	for logic（discrete）outputs except LOG1 to LOG3，OPO，no	X	\checkmark	00	－
［150	Logic output 3 operator	Applies a logic function to calculate［LOG］ output state， Three options： 00．．．［LOG］＝A AND B －1．．．［LOG］＝A OR B 记．．．［LOG］$=$ A XOR B	X	\checkmark	00	－

"C" Function			A	B	Defaults	
Func. Code	Name	Description			$\begin{aligned} & \text { Intitial } \\ & \text { data } \\ & \hline \end{aligned}$	Unis
C160	Input [1] response time	Sets response time of each input terminal, Set range: 0 (x $2[\mathrm{~ms}])$ to 200 ($22[\mathrm{~ms}])$ (0 to 400 [ms])	X	\checkmark	1.	-
[151	Input [2] response time		X	\checkmark	1.	-
[162	Input [3] response time		X	\checkmark	1.	-
¢ 16]	Input [4] response time		X	\checkmark	1.	-
[164	Input [5] response time		X	\checkmark	1.	-
ᄃ 165	Input [6] response time		X	\checkmark	1.	-
ᄃ 165	Input [7] response time		X	\checkmark	1.	-
ᄃ169	Multistage speed/position determination time	Set range is 0. to 200. ($\times 10 \mathrm{~ms}$)	X	\checkmark	0.	ms
¢900	IRDY action selection	Two options: 00... Before Ver. 3.0 01... Ver. 3.0 or after	X	\checkmark	01	-
C90 ${ }^{14}$	Processing cycle of overload advance notice signal select	Two options: 00...40msec I...2msec	X	\checkmark	00	-
[902*4	Filter time constant for overload advance notice signal	Set range: 0. to 9999. msec	X	\checkmark	0.	ms
[903*	Overload advance notice signal hysteresis	Set range: 00.00 to 50.00%	\times	\checkmark	10.00	\%

${ }^{4}$: : Up to 580 Hz for high frequency mode (b171 set to 02)
${ }^{*}$: Available from version 3.0
${ }^{*}$: Power cycle is required to reflect a change.
${ }^{*}$: Available from version 3.1

Input Function Summary Table - This table shows all thirty-one intelligent input functions at a glance. Detailed description of these functions, related parameters and settings, and example wiring diagrams are in "Using Intelligent Input Terminals" on page 30.

Input Function Summary Table				
Option Code	Terminal Symbol	Function Name		Description
00	FW	FORWARD Run/Stop	ON	Inverter is in Run Mode, motor runs forward
			OFF	Inverter is in Stop Mode, motor stops
01	RV	Reverse Run/Stop	ON	Inverter is in Run Mode, motor runs reverse
			OFF	Inverter is in Stop Mode, motor stops
02	CF1	Multi-speed Select, Bit 0 (LSB)	ON	Binary encoded speed select, Bit 0, logical 1
			OFF	Binary encoded speed select, Bit 0, logical 0
03	CF2	Multi-speed Select, Bit 1	ON	Binary encooded speed select, Bit 1, logical 1
			OFF	Binary encoded speed select, Bit 1, logical 0
04	CF3	Multi-speed Select, Bit 2	ON	Binary encoded speed select, Bit 2, logical 1
			OFF	Binary encoded speed select, Bit 2, logical 0
55	CF4	Multi-speed Select, Bit 3 (MSB)	ON	Binary encoded speed select, Bit 3, logical 1
			OFF	Binary encoded speed select, Bit 3, logical 0
06	JG	Jogging	ON	Inverter is in Run Mode, output to motor runs at jog parameter frequency
			OFF	Inverter is in Stop Mode
07	DB	External DC braking	ON	DC braking will be applied during deceleration
			OFF	DC braking will not be applied
昍	SET	Set (select) 2nd Motor Data	ON	The inverter uses 2nd motor parameters for generating frequency output to motor
			OFF	The inverter uses 1 st (main) motor parameters for generating frequency output to motor
09	2CH	2-stage Acceleration and Deceleration	ON	Frequency output uses 2nd-stage acceleration and deceleration values
			OFF	Frequency output uses standard acceleration and deceleration values
11	FRS	Free-run Stop	ON	Causes output to turn OFF, allowing motor to free run (coast) to stop
			OFF	Output operates normally, so con-w-ailed deceleration stop motor
12	EXT	External Trip	ON	When assigned input transitions OFF to ON, inverter latches trip event and displays $E \quad 12$
			OFF	No trip event for ON to OFF, any recorded trip events remain in history until reset
1	USP	Unattended Start Protection	ON	On powerup, the inverter will not resume a Run command (mostly used in the US)
			OFF	On powerup, the inverter will resume a Run command that was active before power loss
14	CS	Commercial power source switchover	ON	Motor can be driven by commercial power
			OFF	Motor is driven via the inverter
15	SFT	Software Lock	ON	The keypad and remote programming devices are prevented from changing parameters
			OFF	The parameters may be edited and stored
16	AT	Analog Input Voltage/Current Select	$\frac{\mathrm{ON}}{\mathrm{ONF}}$	Refer to "Analog Input Operation" on page 44.
旧	RS	Reset Inverter	ON	The trip condition is reset, the motor output is turned OFF, and powerup reset is asserted
			OFF	Normal power-ON operation
19	PTC	PTC thermistor Thermal Protection (C005 only)	ANLG	When a thermistor is connected to terminal [5] and [L], the inverter checks for over-temperature and will cause trip event and turn OFF output to motor
			OPEN	A disconnect of the thermistor causes a trip event, and the inverter turns OFF the motor

Input Function Summary Table				
Option Code	Terminal Symbol	Function Name		Description
20	STA	Start （3－wire interface）	ON	Starts the motor rotation
			OFF	No change to present motor status
21	STP	Stop （3－wire interface）	ON	Stops the motor rotation
			OFF	No change to present motor status
こ2	F／R	FWD，REV （3－wire interface）	ON	Selects the direction of motor rotation： $\mathrm{ON}=\mathrm{FWD}$ ． While the motor is rotating，a change of F / R will start a deceleration，followed by a change in direction
			OFF	Selects the direction of motor rotation：OFF $=$ REV． While the motor is rotating，a change of F / R will start a deceleration，followed by a change in direction
2ヨ	PID	PID Disable	ON	Temporarily disables PID loop control．Inverter output turns OFF as long as PID Enable is active （ AD I＝0 I）
			OFF	Has no effect on PID loop operation，which operates normally if PID Enable is active （ $\mathrm{ROD} 1=0$ I）
24	PIDC	PID Reset	ON	Resets the PID loop controller．The main consequence is that the integrator sum is forced to zero
			OFF	No effect on PID controller
27	UP	Remote Control UP Function（motorized speed pot．）	ON	Accelerates（increases output frequency）motor from current frequency
			OFF	Output to motor operates normally
2日	DWN	Remote Control Down Function（motorized speed pot．）	ON	Decelerates（decreases output frequency）motor from current frequency
			OFF	Output to motor operates normally
29	UDC	Remote Control Data Clearing	ON	Clears the UP／DWN frequency memory by forcing it to equal the set frequency parameter F001． Setting［ 101 must be set $=00$ to enable this function to work
			OFF	UP／DWN frequency memory is not changed
$\exists 1$	OPE	Operator Control	ON	Forces the source of the output frequency setting FOO I and the source of the Run command 8002 to be from the digital operator
			OFF	Source of output frequency set by 7001 and source of Run command set by 7002 is used
$\exists 2$	SF1	Multi－speed Select， Bit operation Bit 1	ON	Bit encoded speed select，Bit 1，logical 1
			OFF	Bit encoded speed select，Bit 1，logical 0
$\exists \exists$	SF2	Multi－speed Select， Bit operation Bit 2	ON	Bit encoded speed select，Bit 2，logical 1
			OFF	Bit encoded speed select，Bit 2，logical 0
$\exists 4$	SF3	Multi－speed Select， Bit operation Bit 3	ON	Bit encoded speed select，Bit 3，logical 1
			OFF	Bit encoded speed select，Bit 3，logical 0
35	SF4	Multi－speed Select， Bit operation Bit 4	ON	Bit encoded speed select，Bit 4，logical 1
			OFF	Bit encoded speed select，Bit 4，logical 0
$\exists 6$	SF5	Multi－speed Select， Bit operation Bit 5	ON	Bit encoded speed select，Bit 5，logical 1
			OFF	Bit encoded speed select，Bit 5，logical 0
37	SF6	Multi－speed Select， Bit operation Bit 6	ON	Bit encoded speed select，Bit 6，logical 1
			OFF	Bit encoded speed select，Bit 6，logical 0
ヨ日	SF7	Multi－speed Select， Bit operation Bit 7	ON	Bit encoded speed select，Bit 7，logical 1
			OFF	Bit encoded speed select，Bit 7，logical 0
$\exists 9$	OLR	Overload Restriction Source Changeover	ON	Perform overload restriction
			OFF	Normal operation

Input Function Summary Table				
Option Code	Terminal Symbol	Function Name		Description
40	TL	Torque Limit Selection	ON	Setting of 6040 is enabled
			OFF	Max. torque is limited with 200%
41	TRQ1	Torque limit switch 1	ON	Torque limit related parameters of Powering/regen, and FW/RV modes are selected by the combinations of these inputs.
			OFF	
42	TRQ2	Torque limit switch 2	ON	
44	BOK	Brake confirmation	ON	Brake wait time (b 124) is valid
			OFF	Brake wait time ($b 124$) is not valid
46	LAC	LAD cancellation	ON	Set ramp times are ignored. Inverter output immediately follows the freq. command.
			OFF	Accel. and/or decel. is according to the set ramp time
47	PCLR	Pulse counter clear	ON	Clear the position deviation data
			OFF	Maintain the position deviation data
50	ADD	ADD frequency enable	ON	Adds the 145 (add frequency) value to the output frequency
			OFF	Does not add the 1145 value to the output frequency
51	F-TM	Force Terminal Mode	ON	Force inverter to use input terminals for output frequency and Run command sources
			OFF	Source of output frequency set by 800 I and source of Run command set by HODZ is used
52	ATR	Enable torque command input	ON	Torque control command input is enabled
			OFF	Torque control command input is disabled
53	KHC	Clear watt-hour data	ON	Clear watt-hour data
			OFF	No action
56	MI1	General purpose input (1)	ON	General purpose input (1) is made ON under
			OFF	General purpose input (1) is made OFF under EzSQ
57	MI2	General purpose input (2)	ON	General purpose input (2) is made ON under EzSQ
			OFF	General purpose input (2) is made OFF under EzSQ
58	M13	General purpose input (3)	ON	General purpose input (3) is made ON under
			OFF	General purpose input (3) is made OFF under EzSQ
59	MI4	General purpose input (4)	ON	General purpose input (4) is made ON under EzSQ
			OFF	General purpose input (4) is made OFF under EzSQ
60	M15	General purpose input (5)	ON	General purpose input (5) is made ON under
			OFF	General purpose input (5) is made OFF under
51	MI6	General purpose input (6)	ON	General purpose input (6) is made ON under EzSQ
			OFF	General purpose input (6) is made OFF under EzSQ
62	M17	General purpose input (7)	ON	General purpose input (7) is made ON under EzSQ
			OFF	General purpose input (7) is made OFF under EzSQ

Input Function Summary Table				
Option Code	Terminal Symbol	Function Name		Description
65	AHD	Analog command hold	ON	Analog command is held
			OFF	Analog command is not held
65	CP1	Multistage－position switch （1）	ON	Multistage position commands are set according to the combination of these switches．
			OFF	
67	CP2	Multistage－position switch （2）	ON	
			OFF	
68	CP3	Multistage－position switch （3）	ON	
69	ORL	Limit signal of homing		
			OFF	Limit signal of homing is OFF
70	ORG	Trigger signal of homing	ON	Starts homing operation
			OFF	No action
73	SPD	Speed／position changeover	ON	Speed control mode
			OFF	Position control mode
77	GS1	GS1 input	ON	EN60204－1 related signals： Signal input of＂Safe torque off＂function．
			OFF	
78	GS2	GS2 input	ON	
			OFF	
日 1	485	Start EzCOM	ON	Starts EzCOM
			OFF	No execution
82	PRG	Executing EzSQ program	ON	Executing EzSQ program
			OFF	No execution
曻	HLD	Retain output frequency	ON	Retain the current output frequency
			OFF	No retention
84	ROK	Permission of Run command	ON	Run command permitted
			OFF	Run command is not permitted
85	EB	Rotation direction detection（C007 only）	ON	Forward rotation
			OFF	Reverse rotation
㫙	DISP	Display limitation	ON	Only a parameter configured in $\mathrm{6O} \mathrm{OB}$ is shown
			OFF	All the monitors can be shown
91	PSET	＂PSET＂simple position control retains preset place．	ON	A value of（P083 $\times 4$ ）is set as present place
			OFF	DC braking will not be applied
255	no	No function	ON	（input ignored）
			OFF	（input ignored）

Output Function Summary Table - This table shows all functions for the logical outputs (terminals [11], [12] and [AL]) at a glance. Detailed descriptions of these functions, related parameters and settings, and example wiring diagrams are in "Using Intelligent Output Terminals" on page 39.

Output Function Summary Table				
Option Code	Terminal Symbol	Function Name		Description
00	RUN	Run Signal	ON	When the inverter is in Run Mode
			OFF	When the inverter is in Stop Mode
01	FA1	Frequency Arrival Type 1-Constant Speed	ON	When output to motor is at the set frequency
			OFF	When output to motor is OFF, or in any acceleration or deceleration ramp
02	FA2	Frequency Arrival Type 2-Over frequency	ON	When output to motor is at or above the set freq, even if in accel ([DU2) or decel ([D4) ramps
			OFF	When output to motor is OFF, or at a level below the set frequency
83	OL	Overload Advance Notice Signal 1	ON	When output current is more than the set threshold (CD4 1) for the overload signal
			OFF	When output current is less than the set threshold for the deviation signal
84	OD	Output Deviation for PID Control	ON	When PID error is more than the set threshold for the deviation signal
			OFF	When PID error is less than the set threshold for the deviation signal
05	AL	Alarm Signal	ON	When an alarm signal has occurred and has not been cleared
			OFF	When no alarm has occurred since the last cleaning of alarm(s)
06	FA3	Frequency Arrival Type 3-Set frequency	ON	When output to motor is at the set frequency, during accel (CDU 2) and decel ([DU ${ }^{2}$).
			OFF	When output to motor is OFF, or is not at a level of the set frequency
07	OTQ	Over/under Torque Signal	ON	Estimated motor torque exceeds the specified level
			OFF	Estimated motor torque is lower than the specified level
09	UV	Undervoltage	ON	Inverter is in Undervoltage
			OFF	Inverter is not in Undervoltage
10	TRQ	Torque Limited Signal	ON	Torque limit function is executing
			OFF	Torque limit function is not executing
11	RNT	Run Time Expired	ON	Total running time of the inverter exceeds the specified value
			OFF	Total running time of the inverter does not exceed the specified value
12	ONT	Power ON time Expired	ON	Total power ON time of the inverter exceeds the specified value
			OFF	Total power ON time of the inverter does not exceed the specified value
13	THM	Thermal Warning	ON	Accumulated thermal count exceeds the C06 I set value
			OFF	Accumulated thermal count does not exceed the [05 I set value
19	BRK	Brake Release Signal	ON	Output for brake release
			OFF	No action for brake
20	BER	Brake Error Signal	ON	Brake error has occurred
			OFF	Brake performance is normal

Output Function Summary Table				
Option Code	Terminal Symbol	Function Name		Description
21	ZS	Zero Hz Speed Detection Signal	ON	Output frequency falls below the threshold specified in $[063$
			OFF	Output frequency is higher than the threshold specified in [06]
22	DSE	Speed Deviation Excessive	ON	Deviation of speed command and actual speed exceeds the specified value P027.
			OFF	Deviation of speed command and actual speed does not exceed the specified value PD27.
$2 \exists$	POK	Positioning Completion	ON	Positioning is completed
			OFF	Positioning is not completed
24	FA4	Frequency Arrival Type 4-Over frequency	ON	When output to motor is at or above the set freq., even if in accel ([D45) or decel ([DU5) ramps
			OFF	When output to motor is OFF, or at a level below the set frequency
25	FA5	Frequency Arrival Type 5-Set frequency	ON	When output to motor is at the set frequency, during accel (CD45) and decel (CDU5).
			OFF	When output to motor is OFF, or is not at a level of the set frequency
26	OL2	Overload Advance Notice Signal 2	ON	When output current is more than the set threshold ([111) for the overload signal
			OFF	When output current is less than the set threshold for the deviation signal
27	ODc	Analog Voltage Input Disconnect Detection	ON	When the [O] input value < b070 setting (signal loss detected)
			OFF	When no signal loss is detected
28	OIDc	Analog Current input Disconnect Detection	ON	When the [OI] input value < 607 I setting (signal loss detected)
			OFF	When no signal loss is detected
$\exists 1$	FBV	PID Second Stage Output	ON	Transitions to ON when the inverter is in RUN Mode and the PID Process Variable (PV) is less than the Feedback Low Limit ([053)
			OFF	Transitions to OFF when the PID Process Variable (PV) exceeds the PID High Limit ([052), and transitions to OFF when the inverter goes from Run Mode to Stop Mode
$\exists 2$	NDc	Network Disconnect Detection	ON	When the communications watchdog timer (period specified by [077) has time out
			OFF	When the communications watchdog timer is satisfied by regular communications activity
$\exists \exists$	LOG1	Logic Output Function 1	ON	When the Boolean operation specified by [$14 \exists$ has a logical "1" result
			OFF	When the Boolean operation specified by [14ق has a logical "0" result
$\exists 4$	LOG2	Logic Output Function 2	ON	When the Boolean operation specified by [145 has a logical "1" result
			OFF	When the Boolean operation specified by [146 has a logical "0" result
$\exists 5$	LOG3	Logic Output Function 3	ON	When the Boolean operation specified by [149 has a logical "1" result
			OFF	When the Boolean operation specified by [149 has a logical "0" result
39	WAC	Capacitor Life WarningSignal Signal	ON	Lifetime of internal capacitor has expired.
			OFF	Lifetime of internal capacitor has not expired.

Output Function Summary Table				
Option Code	Terminal Symbol	Function Name		Description
40	WAF	Cooling Fan Warning Signal	ON	Lifetime of cooling fan has expired.
			OFF	Lifetime of cooling fan has not expired.
41	FR	Starting Contact Signal	ON	Either FW or RV command is given to the inverter
			OFF	No FW or RV command is given to the inverter, or both are given to the inverter
42	OHF	Heat Sink Overheat Warning	ON	Temperature of the heat sink exceeds a specified value ([054)
			OFF	Temperature of the heat sink does not exceed a specified value (CDE4)
43	LOC	Low load detection	ON	Motor current is less than the specified value (C079)
			OFF	Motor current is not less than the specified value (C079)
44	MO1	General Output 1	ON	General output 1 is ON
			OFF	General output 1 is OFF
45	MO2	General Output 2	ON	General output 2 is ON
			OFF	General output 2 is OFF
46	MO3	General Output 3	ON	General output 3 is ON
			OFF	General output 3 is OFF
50	IRDY	Inverter Ready Signal	ON	Inverter can receive a run command
			OFF	Inverter cannot receive a run command
51	FWR	Forward Rotation	ON	Inverter is driving the motor in forward direction
			OFF	Inverter is not driving the motor in forward direction
52	RVR	Reverse Rotation	ON	Inverter is driving the motor in reverse direction
			OFF	Inverter is not driving the motor in reverse direction
53	MJA	Major Failure Signal	ON	Inverter is tripping with major failure
			OFF	Inverter is normal, or is not tripping with major failure
54	WCO	Window Comparator for Analog Voltage Input	ON	Analog voltage input value is inside of the window comparator
			OFF	Analog voltage input value is outside of the window comparator
55	WCOI	Window Comparator for Analog Current Input	ON	Analog current input value is inside of the window comparator
			OFF	Analog current input value is outside of the window comparator
58	FREF	Frequency Command Source	ON	Frequency command is given from the operator
			OFF	Frequency command is not given from the operator
59	REF	Run Command Source	ON	Run command is given from the operator
			OFF	Run command is not given from the operator
60	SETM	$2^{\text {nd }}$ Motor Selection	ON	$2{ }^{\text {nd }}$ motor is being selected
			OFF	$2^{\text {nad }}$ motor is not being selected
62	EDM	STO (Safe Torque Off) Performance Monitor (Output terminal 11 only)	ON	STO is being performed
			OFF	STO is not being performed
63	OPO	Option card output	ON	(output terminal for option card)
			OFF	(output terminal for option card)
255	no	Not used	ON	-
			OFF	-

Motor Constants Functions

＂H＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
HOL 1	Auto－tuning selection	Three option codes： 00．．．Disabled © 1．．．Enabled with motor stop 02．．．Enabled with motor rotation	X	X	00	－
H002	Motor constant selection	Two option codes： 00．．．Hitachi standard motor 02．．．Auto tuned data	X	X	00	－
H202	Motor constant selection， $2^{\text {nd }}$ motor		X	X	00	－
H003	Motor capacity	Twelve selections： 0．1／0．2／0．4／0．55／0．75／1．1／1．5／2．2／3．0／3．7／ 4．0／5．5／7．5／11／15／18．5	X	X	Specified by the capacity of each inverter model	kW
H203	Motor capacity， $2^{\text {nd }}$ motor		X	X		kW
H004	Motor poles setting	$\begin{aligned} & \text { Forty eight selections: } \\ & 2(0) / 4(1) / 6(2) / 8(3) / 10(4) / 12(5) / 14(6) / 16(7) / \\ & 18(8) / 20(9) / 22(10) / 24(11) / 26(12) / 28(13) / \\ & 30(14) / 32(15) / 34(16) / 36(17) / 38(18) / 40(19) / \\ & 42(20) / 44(21) / 46(22) / 48(23) \end{aligned}$	\mathbf{X}	X	4	poles
H204	$\begin{aligned} & \text { Motor poles setting, } \\ & 2^{\text {nd }} \text { motor } \end{aligned}$		\mathbf{X}	X	4	poles
H005	Motor speed response constant	Set range is 1 to 1000	\checkmark	\checkmark	100.	－
H205	Motor speed response constant， $2^{\text {nd }}$ motor		\checkmark	\checkmark	100.	－
H006	Motor stabilization constant	Motor constant（factory set）， range is 0 ．to 255 ．	\checkmark	\checkmark	100．．	－
H206	Motor stabilization constant， $2^{\text {nd }}$ motor		\checkmark	\checkmark	100.	－
H020	Motor constant R1， （Hitachi motor）	0.001 to 65.535 ohms	X	X	Specified by the capacity of each inverter mode	Ohm
H220	Motor constant R1， $2^{\text {nd }}$ motor（Hitachi motor）		X	X		Ohm
HOE 1	Motor constant R2， （Hitachi motor）	0.001 to 65.535 ohms	X	X		Ohm
H2こ I	Motor constant R2， $2^{\text {nd }}$ motor（Hitachi motor）		\mathbf{X}	X		Ohm
H022	Motor constant L， （Hitachi motor）	0.01 to 655.35 mH	X	X		mH
Нこここ	Motor constant L， $2^{\text {nd }}$ motor（Hitachi motor）		X	X		mH

＂H＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
H02J	Motor constant IO （Hitachi motor）	0.01 to 655．35A	x	X		A
H22	Motor constant 10， $2^{\text {nd }}$ motor（Hitachi motor）		X	X		A
H024	Motor constant J （Hitachi motor）	0.001 to $9999 \mathrm{kgm}^{2}$	x	X		kgm^{2}
H224	Motor constant $\mathrm{J}, 2^{\text {id }}$ motor（Hitachi motor）		x	X		kgm^{2}
H070	Motor constant R1 （Auto tuned data）	0.001 to 65.535 ohms	X	X	Specified by the capacity of each inverter mode	ohm
H2J	Motor constant R1， $2^{\text {nd }}$ motor（Auto tuned data）		X	X		ohm
H03 1	Motor constant R2 （Auto tuned data）	0.001 to 65.535 ohms	X	X		ohm
H2ヲ 1	Motor constant R2， $2^{\text {nd }}$ motor（Auto tuned data）		x	X		ohm
H0ヨ2	Motor constant L （Auto tuned data）	0.01 to 655.35 mH	x	X		mH
H2ヨコ	Motor constant L ， $2^{\text {nd }}$ motor （Auto tuned data）		X	X		mH
H0ヲコ	```Motor constant IO (Auto tuned data)```	0.01 to 655．35A	x	X		A
H2ヲコ	Motor constant IO， $2^{\text {nd }}$ motor （Auto tuned data）		X	X		A
H0ヨ4	Motor constant J （Auto tuned data）	0.001 to $9999 \mathrm{kgm}^{2}$	x	X		kgm^{2}
H2ق	Motor constant $\mathrm{J}, 2^{\text {nd }}$ motor （Auto tuned data）		X	X		kgm^{2}
H050	Slip compensation P gain for V / f control with FB	0.00 to 10.00	\checkmark	\checkmark	0.20	Times
H05 1	Slip compensation I gain for V／f control with FB	0．to 1000	\checkmark	\checkmark	2	s

"H" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Units
H IOE	PM motor code setting	00...Hitachi standard (Use H106-H110 for motor constants) - $1 . .$. Auto-Tuning (Use H109-H110, H111-H113 for motor constants)	X	X	00	-
H 103	PM motor capacity	0.1/0.2/0.4/0.55/0.75/1.1/1.5/2.2/ 3.0/3.7/4.0/5.5/7.5/11.0/15.0/18.5	X	X	kW dependent	kW
H 104	PM motor pole setting	2/4/6/8/10/12/14/16/18/20/22/24/26/ $28 / 30 / 32 / 34 / 36 / 38 / 40 / 42 / 44 / 46 / 48$	X	X	kW dependent	Poles
H 105	PM Rated Current	(0.00 to 1.00) \times Rated current of the inverter [A]	X	X	kW dependent	A
H IOE	PM const R(Resistance)	0.001 to 65.535 [Ω]	X	X	kW dependent	Ohm
H 107	PM const Ld (d-axis inductance)	0.01 to 655.35 [mH]	X	X	kW dependent	mH
H IOE	PM const Lq (q-axis inductance)	0.01 to 655.35 [mH]	X	X	kW dependent	mH
H 109	PM const Ke (Induction voltage constant)	0.0001 to $6.5535[\mathrm{~V} /(\mathrm{rad} / \mathrm{s})$]	X	X	kW dependent	$\begin{gathered} \mathrm{V} / \\ (\mathrm{rad} / \mathrm{s}) \end{gathered}$
H 110	PM const J (Moment of inertia)	0.001 to $9999.000\left[\mathrm{kgm}^{2}\right]$	X	X	kW dependent	kgm^{2}
H 111	PM const R (Resistance, Auto)	0.001 to 65.535 [Ω]	X	X	kW dependent	Ohm
H IIE	PM const Ld (d-axis inductance, Auto)	0.01 to 655.35 [mH]	X	X	kW dependent	mH
H1日	PM const Lq(q-axis inductance, Auto)	0.01 to 655.35 [mH]	X	X	kW dependent	mH
HIIG	PM Speed Response	1 to 1000 [\%]	\checkmark	\checkmark	100	\%
H 117	PM Starting Current	20.00 to 100.00 [\%]	X	X	70.00[\%]	\%
	PM Starting Time	0.01 to 60.00 [s]	X	X	1.00[s]	s
H 119	PM Stabilization Constant	0 to 120 [\%]	\checkmark	\checkmark	100[\%]	\%
H I2 I	PM Minimum Frequency	0.0 to 25.5 [\%]	\checkmark	\checkmark	8.0 [\%]	\%
H IE2	PM No-Load Current	0.00 to 100.00 [\%]	\checkmark	\checkmark	10.00 [\%]	\%
H I2ق	PM Starting Method Select	00... Normal © I... Initial Magnet Position Estimation	X	X	00	-

"H" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Units
HII	PM Initial Magnet Position Estimation OV Wait Times	0 to 255	X	X	10	-
H 1 Z	PM Initial Magnet Position Estimation Detect Wait Times	0 to 255	X	\mathbf{X}	10	-
H 壮	PM Initial Magnet Position Estimation Detect Times	0 to 255	X	X	30	-
H134	PM Initial Magnet Position Estimation Voltage Gain	0 to 200	X	X	100	-

Expansion Card Functions

＂P＂parameters will be appeared when the expansion option is connected．

＂P＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
POOI	Reaction when option card error occurs	Two option codes： 00．．．Inverter trips D I．．．Ignores the error（Inverter continues operation）	X	\checkmark	00	－
P003	［EA］terminal selection	Three option codes： 00．．．Speed reference（incl．PID） © I．．．For control with encoder feedback 02．．．Extended terminal for EzSQ	X	X	00	－
P004	Pulse train input mode selection for feedback	Four option codes： 00 ．．．Single－phase pulse［EA］ － $1 .$. ．2－phase pulse（ 90° difference） 1 （［EA］and［EB］） 02．．．2－phase pulse（ 90° difference） 2 （［EA］and［EB］） 03．．．Single－phase pulse［EA］and direction signal［EB］	X	X	00	－
PO 11	Encoder pulse setting	Sets the pulse number（ppr）of the encoder，set range is 32 to 1024 pulses	X	X	512	－
POIL	Simple positioning selection	Two option codes： 00．．．simple positioning deactivated Q I．．．simple positioning activated	X	X	00	－
PO $14{ }^{*}$	Creep pulse ratio	0.0 to 400．0［\％］	X	X	125.0	\％
PO 15	Creep Speed	Set range is start frequency（b0日2）to 10.00 Hz	X	\checkmark	5.00	Hz
PO $17{ }^{*}$	Positioning completion range	0 to 9999．／1000（10000）［pulse］	X	X	50	Pulses
Р026	Over－speed error detection level	Set range is 0 to 150%	X	\checkmark	115.0	\％
PO27	Speed deviation error detection level	Set range is 0 to 120 Hz	X	\checkmark	10.00	Hz
POJ 1	Deceleration time Input Type	00．．．Operator 01．．．EzSQ	X	X	00	－
POヨヨ	Torque command input selection	Three option codes： 00．．．Analog voltage input［O］ D I．．．Analog current input［OI］ 03．．．Operator 06．．．Option	X	X	00	－
P034	Torque command level input	Set range is 0 to 200\％	\checkmark	\checkmark	0.	\％
РОЗ6	Torque bias mode selection	Two option codes： 00．．．No bias － $1 .$. Operator 05．．．Option	X	X	00	－
P077	Torque bias value setting	Range is－200 to 200\％	\checkmark	\checkmark	0.	\％
P0ヨ日	Torque bias polar selection	Three option codes： 00．．．According to the sign $\square 1$ ．．．According to the rotation direction	X	X	00	－

＂P＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
P039	Speed limit of Torque control （Forward rotation）	Set range is 0.00 to 120.00 Hz	X	X	0.00	Hz
PO40	Speed limit of Torque control （Forward rotation）	Set range is 0.00 to 120.00 Hz	X	X	0.00	Hz
PO4 1	Speed／Torque control switching time	Set range is 0 to 1000 ms	X	X	0.	ms
P044	Communication watchdog timer （for option）	Set range is 0.00 to 99.99 s	X	X	1.00	s
P045	Inverter action on communication error （for option）	00．．．Tripping © I．．．Tripping after decelerating and stopping the motor 02．．．lgnoring errors 03．．．Stopping the motor after free－running 04．．．Decelerating and stopping the motor	X	X	00	－
РОЧ6	DeviceNet polled I／O： Output instance number	00 to 20	X	X	01	－
P 24	Inverter action on communication idle mode	00．．．Tripping © 1．．．Tripping after decelerating and stopping the motor $02 .$. Ignoring errors 03．．．Stopping the motor after free－running 04．．．Decelerating and stopping the motor	X	X	00	－
P049	Motor poles setting for RPM	$\begin{aligned} & \hline 0 / 2 / 4 / 6 / 8 / 10 / 12 / 14 / 16 / 18 / 20 / 22 / 24 / \\ & 26 / 28 / 30 / 32 / 34 / 36 / 38 / 40 / 42 / 44 / 46 / 48 \\ & \hline \end{aligned}$	X	X	0	Poles
P055	Pulse train input frequency scale setting	Sets the pulse numbers at max． frequency，set range is $1.0 \sim 32.0 \mathrm{kHz}$	X	\checkmark	1.5	kHz
P056	Pulse train input frequency filter time constant setting	Set range is 0.01 to 2.00 sec ．	X	\checkmark	0.10	s
P057	Pulse train input bias setting	Set range is－100 to 100%	X	\checkmark	0.	\％
P05日	Limitation of the pulse train input setting	Set range is 0 to 100%	X	\checkmark	100.	\％
P059＊2	Lower cut off level of the input pulse	0.01 to 20．00［\％］	X	\checkmark	1.00	\％
PO60	Multistage position 0	PD7ヨ to Pロาट （Displayed higher 4－digits only）	\checkmark	\checkmark	0	Pulses
PO6 1	Multistage position 1		\checkmark	\checkmark	0	Pulses
P062	Multistage position 2		\checkmark	\checkmark	0	Pulses
P063	Multistage position 3		\checkmark	\checkmark	0	Pulses
P064	Multistage position 4		\checkmark	\checkmark	0	Pulses
P065	Multistage position 5		\checkmark	\checkmark	0	Pulses
P066	Multistage position 6		\checkmark	\checkmark	0	Pulses
P067	Multistage position 7		\checkmark	\checkmark	0	Pulses

＂P＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
P 068	Homing mode selection	00．．．Low speed mode O I．．．High speed mode	\checkmark	\checkmark	00	－
P069	Homing direction	00．．．Forward rotation side D I．．．Reverse rotation side	\checkmark	\checkmark	01	－
P870	Low speed homing freq．	0 to 10 Hz	\checkmark	\checkmark	5.00	Hz
P07 1	High speed homing freq．	0 to $400(580){ }^{\text {T }} \mathrm{Hz}$	\checkmark	\checkmark	5.00	Hz
P072	Position range （Forward）	0 to +268435455 （Higher 4－digits displayed）	\checkmark	\checkmark	＋268435455	Pulses
P07コ	Position range （Reverse）	$\begin{aligned} & -268435455 \text { to } 0 \text { (Higher 4-digits } \\ & \text { displayed) } \end{aligned}$	\checkmark	\checkmark	－268435455	Pulses
P075	Positioning mode selection	00．．．With limitation －I．．．No limitation（shorter route） P004 is to be set 00 or 01	X	X	00	－
P077	Encoder disconnection timeout	0.0 to 10.0 s	\checkmark	\checkmark	1.0	s
PO日C＊${ }^{\text {2 }}$	Positioning restart range	0 to 9999．／1000（10000）［pulse］	X	X	0	Pulses
POE ${ }^{\text {＋2 }}$	Store position at power off selection	00．．．Not store 1 I．．．Store	X	\checkmark	00	－
PO日2＊2	Current position at power off	P073 to P072（upper four digits are shown）	\checkmark	\checkmark	0	Pulses
POBJ＊2	Preset position data	P073 to P072（upper four digits are shown）	\checkmark	\checkmark	0	Pulses
$\begin{array}{\|c\|l\|} \hline \text { P } 100 \\ \text { to } \\ \text { P } 191 \end{array}$	EzSQ user parameter $\mathrm{U}(00) \sim \mathrm{U}(31)$	Each set range is 0 to 65535	\checkmark	\checkmark	0.	－
P140	$\begin{aligned} & \text { EzCOM number of } \\ & \text { data } \end{aligned}$	1 to 5	\checkmark	\checkmark	5	－
P141	EzCOM destination 1 adderss	1 to 247	\checkmark	\checkmark	1	－
Р 142	EzCOM destination 1 register	0000 to FFFF	\checkmark	\checkmark	0000	－
Р14ヨ	$\begin{aligned} & \text { EzCOM source } 1 \\ & \text { register } \end{aligned}$	0000 to FFFF	\checkmark	\checkmark	0000	－
P 144	EzCOM destination 2 adderss	1 to 247	\checkmark	\checkmark	2	－
P 145	$\begin{aligned} & \text { EzCOM } \\ & \text { destination } 2 \\ & \text { renister } \end{aligned}$ register	0000 to FFFF	\checkmark	\checkmark	0000	－
P 146	$\begin{aligned} & \text { EzCOM source } 2 \\ & \text { register } \end{aligned}$	0000 to FFFF	\checkmark	\checkmark	0000	－
P 147	EzCOM destination 3 adderss	1 to 247	\checkmark	\checkmark	3	－
P14日	$\begin{aligned} & \text { EZCOM } \\ & \text { destination } 3 \\ & \text { register } \end{aligned}$	0000 to FFFF	\checkmark	\checkmark	0000	－
P149	$\begin{aligned} & \text { EzCOM source } 3 \\ & \text { register } \end{aligned}$	0000 to FFFF	\checkmark	\checkmark	0000	－
P 150	$\begin{aligned} & \text { EzCOM } \\ & \text { destination } 4 \end{aligned}$ adderss	1 to 247	\checkmark	\checkmark	4	－

＂P＂Function			A	B	Defaults	
Func． Code	Name	Description			Initial data	Units
P 151	EzCOM destination 4 register	0000 to FFFF	\checkmark	\checkmark	0000	－
P152	EzCOM source 4 register	0000 to FFFF	\checkmark	\checkmark	0000	－
P153	EzCOM destination 5 adderss	1 to 247	\checkmark	\checkmark	5	－
P 154	EZCOM destination 5 register	0000 to FFFF	\checkmark	\checkmark	0000	－
P 155	$\begin{aligned} & \text { EzCOM source } 5 \\ & \text { register } \end{aligned}$	0000 to FFFF	\checkmark	\checkmark	0000	－
$\begin{array}{c\|c\|} \hline P 160 \\ \text { to } \\ P \text { I69 } \end{array}$	Option I／F command register to write 1 to 10	0000h to FFFFh	\checkmark	\checkmark	0000	－
$\begin{gathered} \hline P 170 \\ \text { to } \\ P 17 g^{* 2} \end{gathered}$	Option I／F command register to read 1 to 10	0000h to FFFFh	\checkmark	\checkmark	0000	－
P $18 \mathrm{O}^{* 2}$	Profibus Node address	0．to 125.	x	X	0.	－
P旧 ${ }^{\text {² }}$	Profibus Clear Node address	00．．．Clear © $1 .$. Hold previous time value	X	X	00	－
P 旧ご2	Profibus Map selection	00．．．PPO type －I．．．Conventional 02．．．Flexible Mode Format Selection	X	X	00	－
P 185^{*}	CANOpen Node address	0 to 127	X	X	0	－
P 旧6 ${ }^{\text {² }}$	CANOpen communication speed	00 to 08	X	X	06	－
P190＊	CompoNet Node address	0 to 63	X	X	0	－
P 192^{*}	DeviceNet MAC ID	0 to 63	X	X	63	－
P195＊2	ML2 frame length	$\begin{aligned} & \hline 00 . . .32 \text { bytes } \\ & 01 . . .17 \text { bytes } \\ & \hline \end{aligned}$	X	X	00	－
P 196＊2	ML2 Node address	21h to 3Eh	X	X	21h	－

${ }^{*} 1$ ：Up to 580 Hz for high frequency mode（b171 set to 02）
${ }^{2}$ ： ：Available from version 3.0
＊3：Power cycle is required to reflect a change．
＊4：Available from version 3.1

"P" Function			A	B	Defaults	
Func. Code	Name	Description			Initial data	Units
PROU	Serial communication mode	00...Standard © I...Free mapping	X	\checkmark	00	-
$\left.\begin{array}{\|c\|c\|} \hline P 201 \\ \text { to } \\ P_{* 2} 103 \end{array} \right\rvert\,$	Modbus external register 1 to 10	0000h to FFFFh	X	\checkmark	0000	-
	Modbus register format 1 to 10	00...Unsigned © I...Signed	X	\checkmark	00	-
	Modbus register scaling 1 to 10	0.001 to 65.535	X	\checkmark	1.000	\%
$\begin{array}{\|c\|c\|} \hline P \exists D I \\ \text { to } \\ P \exists 10 \\ \underbrace{}_{2} * 3 \end{array}$	Modbus internal register 1 to 10	0000h to FFFFh	X	\checkmark	0000	-
$\underset{* 2 * 3}{ }$	Modbus endian setting	00...Big endian © I...Little endian 02...Special endian*3	X	\checkmark	00	-
P900*4	Single-phase encoder pulse input half cycle/ whole cycle select	Two options; select codes: 00...Half cycle Q I...Whole cycle	X	\checkmark	00	-
P90 ${ }^{4}$	Filter time constant for speed detection	Set range is 0 to 9999 msec	X	\checkmark	20.	ms

${ }^{*}$: Up to 580 Hz for high frequency mode (b171 set to 02)
${ }^{*}$: Available from version 3.0
${ }^{* 3}$: Power cycle is required to reflect a change.
*4: Available from version 3.1

User setting parameters

| "U" Function | | | | Defaults | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func.
 Code | Name | Description | B | Initial data | Units |
| UOD I
 to
 UOJ2 | User selection 1 to
 User selection 32 | no/d001 to P196 | | | |

Monitoring Trip Events, History, \& Conditions

Trip History and Inverter Status

We recommend that you first find the cause of the fault before clearing it. When a fault occurs, the inverter stores the important performance data at the moment of the fault. To access the data, use the monitor function ($\sigma x x x$) and select $d 0$ I details about the present fault. The

The following Monitor Menu map shows how to access the error logs. When fault(s) exist, you can review their details by first selecting the proper function: d O I I is the most recent, and A OEb is the oldest.

Trip history 1 (Latest)
Trip history 6

. -7 Power up or initial processing

. 2 Deceleration
. 3 Constant speed
.4 Acceleration
.5 OHz command and RUN
.5 Starting
.7 DC braking
. B Overload restriction

Note: Indicated inverter status could be different from actual inverter behavior. e.g. When PID operation or frequency given by analog signal, although it seems constant speed, acceleration and deceleration could be repeated in very short cycle.

Error Codes

An error code will appear on the display automatically when a fault causes the inverter to trip. The following table lists the cause associated with the error.

Error Code	Name	Cause(s)
ED 1	Over-current event while at constant speed	The inverter output was short-circuited, or the motor shaft is locked or has a heavy load. These conditions cause excessive current for the inverter, so the inverter output is turned OFF. The dual-voltage motor is wired incorrectly.
E02	Over-current event during deceleration	
E03	Over-current event during acceleration	
E04	Over-current event during other conditions	
E05	Overload protection	When a motor overload is detected by the electronic thermal function, the inverter trips and turns OFF its output.
E06	Braking resistor overload protection	When the BRD operation rate exceeds the setting of "b090", this protective function shuts off the inverter output and displays the error code.
E07	Over-voltage protection	When the DC bus voltage exceeds a threshold, due to such causes as regenerative energy from the motor or rise of power voltage, etc.
E0日	EEPROM error	When the built-in EEPROM memory has problems due to noise or excessive temperature, the inverter trips and turns OFF its output to the motor.
E09	Under-voltage error	A decrease of internal DC bus voltage below a threshold results in a control circuit fault. This condition can also generate excessive motor heat or cause low torque. The inverter trips and turns OFF its output.
E II	Current detection error	If an error occurs in the internal current detection system, the inverter will shut off its output and display the error code.
E 11	CPU error	A malfunction in the built-in CPU has occurred, so the inverter trips and turns OFF its output to the motor.
E I2	External trip	A signal on an intelligent input terminal configured as EXT has occurred. The inverter trips and turns OFF the output to the motor.
E 日	USP	When the Unattended Start Protection (USP) is enabled, an error occurred when power is applied while a Run signal is present. The inverter trips and does not go into Run Mode until the error is cleared.
E 14	Ground fault	The inverter is protected by the detection of ground faults between the inverter output and the motor upon during powerup tests. This feature protects the inverter, and does not protect humans.
E 15	Input over-voltage	The inverter tests for input over-voltage after the inverter has been in Stop Mode for 100 seconds. If an over-voltage condition exists, the inverter enters a fault state. After the fault is cleared, the inverter can enter Run Mode again.
E 19	Inverter thermal detection system error	When the thermal sensor in the inverter module is not connected.
E2 1	Inverter thermal trip	When the inverter internal temperature is above the threshold, the thermal sensor in the inverter module detects the excessive temperature of the power devices and trips, turning the inverter output OFF.

$\begin{aligned} & \text { Error } \\ & \text { Code } \end{aligned}$	Name	Cause（s）
Eこ2	CPU communication error	When communication between two CPU fails，inverter trips and displays the error code．
E25	Main circuit error	The inverter will trip if the power supply establishment is not recognized because of a malfunction due to noise or damage to the main circuit element．
E30	Driver error	An internal inverter error has occurred at the safety protection circuit between the CPU and main driver unit． Excessive electrical noise may be the cause．The inverter has turned OFF the IGBT module output．
E 35	Thermistor	When a thermistor is connected to terminals［5］and［L］ and the inverter has sensed the temperature is too high， the inverter trips and turns OFF the output．
ЕЭБ	Braking error	When＂01＂has been specified for the Brake Control Enable（b120），the inverter will trip if it cannot receive the braking confirmation signal within the Brake Wait Time for Confirmation（b124）after the output of the brake release signal．
Eヨ7	Safe Stop	Safe stop signal is given when b145 $=01$ ．
Eヨ日	Low－speed overload protection	If overload occurs during the motor operation at a very low speed，the inverter will detect the overload and shut off the inverter output．
E40	Operator connection	When the connection between inverter and operator keypad failed，inverter trips and displays the error code．
E4 1	Modbus communication error	When＂trip＂is selected（C076＝00）as a behavior in case of communication error，inverter trips when timeout happens．
E4J	EzSQ invalid instruction	The program stored in inverter memory has been destroyed，or the PRG terminal was turned on without a program downloaded to the inverter．
E44	EzSQ nesting count error	Subroutines，if－statement，or for－next loop are nested in more than eight layers
E45	EzSQ instruction error	Inverter found the command which cannot be executed．
$\begin{gathered} \text { E50 } \\ \text { to } \\ \text { E59 } \end{gathered}$	EzSQ user trip（0 to 9）	When user－defined trip happens，inverter trips and displays the error code．
$\begin{gathered} \text { E60 } \\ \text { to } \\ \text { E69 } \end{gathered}$	Option error	The inverter detects errors in the option board mounted in the optional slot．For details，refer to the instruction manual for the mounted option board．
E日O	Encoder disconnection	If the encoder wiring is disconnected，an encoder connection error is detected，the encoder fails，or an encoder that does not support line driver output is used， the inverter will shut off its output and display the error code shown on the right．
E日 1	Excessive speed	If the motor speed rises to＂maximum frequency （A004）x over－speed error detection level（P026）＂or more， the inverter will shut off its output and display the error code shown on the right．
E日コ	Positioning range error	If current position exceeds the position range （P072－P073），the inverter will shut off its output and display the error code．
E9日	Outside failure	Safe stop signal is given when b145 $=02$ ．
E99	Inside failure	Safe stop signal is given when b145＝02， 03 or 05.

NOTE：Reset is not allowed in 10 second after trip．
NOTE：When error E08，E14 and E30 occur，reset operation by RS terminal or STOP／RESET key is not accepted．In this case，reset by cycling power．If still same error occurs，perform initialization．

NOTE: When error E37 occur, reset operation by STOP/RESET key is not accepted. In this case, reset by cycling power. If still same error occurs, perform initialization.

NOTE: When error E98 and E99 occur, reset operation by RS terminal or STOP/RESET key is not accepted. In this case, reset by cycling power. If still same error occurs, please check GS1, GS2 and EDM.

Other indication

Error Code	Name	Descriptions
$\underset{\text { [TJT, }}{ }$ Rotating	Reset	RS input is ON or STOP/RESET key is pressed.
----	Undervoltage	If input voltage is under the allowed level, inverter shuts off output and waits with this indication.
0000	Waiting to restart	This indication is displayed after tripping before restarting.
0000	Restricted operation command	Commanded RUN direction is restricted in b035.
L HE	Trip history initializing	Trip history is being initialized.
--	No data (Trip monitor)	No trip/waning data exists.
---- Blinking	Communication error	Communication between inverter and digital operator fails.
---a	Auto-tuning completed	Auto-tuning is completed properly.
--.	Auto-tuning error	Auto-tuning fails.

Restoring Factory Default Settings

You can restore all inverter parameters to the original factory (default) settings according to area of use. After initializing the inverter, use the powerup test (please refer to Chapter 2 in the Instruction Manual) to get the motor running again. If operation mode (std. or high frequency) mode is changed, inverter must be initialized to activate new mode. To initialize the inverter, follow the steps below.
(1) Select initialization mode in 60 B 4.
(2) If $\llcorner 084=02,0 \exists$ or 04 , select initialization target data in 6094 .
(3) If $6084=02,03$ or 04 , select country code in 6085 .
(4) Set 0 I in b l日C.
(5) Initialization is started, and is completed with AOCO I displayed.

* Please change from"04 (Basic display)" to "00 (Full display)" in parameter
b0ヨ7 (Function code display restriction), in case some parameters cannot be displayed.

CE-EMC Installation Guidelines

You are required to satisfy the machinery directive (2006/42/EC) and the EMC directive (2004/108/EC [until April 19th 2016], 2014/30/EU [from April 20th 2016]) when using a WJ200 inverter in an EU country.

To satisfy the EMC directive and to comply with standard, you need to use a dedicated EMC filter suitable for each model, and follow the guidelines in this section. Following table shows the compliance condition for reference.

Table 1. Condition for the compliance

Model	Cat.	Carrier f	Motor cable
All WJ200 series	C1	2 kHz	20 m (Shielded)

Table 2. Applicable EMC filter

Input class	Inverter model	Filter model (Schaffner)
1-ph. 200V class	WJ200-001SF	FS24828-8-07
	WJ200-002SF	
	WJ200-004SF	
	WJ200-007SF	FS24828-27-07
	WJ200-015SF	
	WJ200-022SF	
3-ph. 200V class	WJ200-001LF	FS24829-8-07
	WJ200-002LF	
	WJ200-004LF	
	WJ200-007LF	
	WJ200-015LF	FS24829-16-07
	WJ200-022LF	
	WJ200-037LF	FS24829-25-07
	WJ200-055LF	FS24829-50-07
	WJ200-075LF	
	WJ200-110LF	FS24829-70-07
	WJ200-150LF	FS24829-75-07
3-ph. 400V class	WJ200-004HF	FS24830-6-07
	WJ200-007HF	
	WJ200-015HF	FS24830-12-07
	WJ200-022HF	
	WJ200-030HF	
	WJ200-040HF	FS24830-15-07
	WJ200-055 HF	FS24830-29-07
	WJ200-075HF	
	WJ200-110HF	FS24830-48-07
	WJ200-150HF	

WJ200-110L and 150H needs to be installed in a metal cabinet and add ferrite core at the input cable to meet category C1. Unless otherwise category C2.

Important notes

1. Input choke or other equipment is required if necessary to comply with EMC directive from the harmonic distortion point of view (IEC 61000-3-2 and 4).
2. If the motor cable length exceeds 20 m , use output choke to avoid unexpected problem due to the leakage current from the motor cable (such as malfunction of the thermal relay, vibration of the motor, etc...).
3. As user you must ensure that the HF (high frequency) impedance between adjustable
frequency inverter, filter, and ground is as small as possible.

- Ensure that the connections are metallic and have the largest possible contact areas (zinc-plated mounting plates).

4. Avoid conductor loops that act like antennas, especially loops that encompass large areas.

- Avoid unnecessary conductor loops.
- Avoid parallel arrangement of low-level signal wiring and power-carrying or noise-prone conductors.

5. Use shielded wiring for the motor cable and all analog and digital control lines.

- Allow the effective shield area of these lines to remain as large as possible; i.e., do not strip away the shield (screen) further away from the cable end than absolutely necessary.
- With integrated systems (for example, when the adjustable frequency inverter is communicating with some type of supervisory controller or host computer in the same control cabinet and they are connected at the same ground + PE-potential), connect the shields of the control lines to ground + PE (protective earth) at both ends. With distributed systems (for example the communicating supervisory controller or host computer is not in the same control cabinet and there is a distance between the systems), we recommend connecting the shield of the control lines only at the end connecting to the adjustable frequency inverter. If possible, route the other end of the control lines directly to the cable entry section of the supervisory controller or host computer. The shield conductor of the motor cables must always be connected to ground +PE at both ends.
- To achieve a large area contact between shield and ground + PE-potential, use a PG screw with a metallic shell, or use a metallic mounting clip.
- Use only cable with braided, tinned copper mesh shield (type "CY") with 85% coverage.
- The shielding continuity should not be broken at any point in the cable. If the use of reactors, contactors, terminals, or safety switches in the motor output is necessary, the unshielded section should be kept as short as possible.
- Some motors have a rubber gasket between terminal box and motor housing. Very often, the terminal boxes, and particularly the threads for the metal PG screw connections, are painted. Make sure there is always a good metallic connection between the shielding of the motor cable, the metal PG screw connection, the terminal box, and the motor housing. If necessary, carefully remove paint between conducting surfaces.

6. Take measures to minimize interference that is frequently coupled in through installation cables.

- Separate interfering cables with 0.25 m minimum from cables susceptible to interference. A particularly critical point is laying parallel cables over longer distances. If two cables intersect (one crosses over the other), the interference is smallest if they intersect at an angle of 90°. Cables susceptible to interference should therefore only intersect motor cables, intermediate circuit cables, or the wiring of a rheostat at right angles and never be laid parallel to them over longer distances.

7. Minimize the distance between an interference source and an interference sink (interference- threatened device), thereby decreasing the effect of the emitted interference on the interference sink.

- You should use only interference-free devices and maintain a minimum distance of 0.25 m from the adjustable frequency inverter.

8. Follow safety measures in the filter installation.

- If using external EMC filter, ensure that the ground terminal (PE) of the filter is properly connected to the ground terminal of the adjustable frequency inverter. An HF ground connection via metal contact between the housings of the filter and the
adjustable frequency inverter, or solely via cable shield, is not permitted as a protective conductor connection. The filter must be solidly and permanently connected with the ground potential so as to preclude the danger of electric shock upon touching the filter if a fault occurs.
To achieve a protective ground connection for the filter:
- Ground the filter with a conductor of at least $10 \mathrm{~mm}^{2}$ cross-sectional area.
- Connect a second grounding conductor, using a separate grounding terminal parallel to the protective conductor. (The cross section of each single protective conductor terminal must be sized for the required nominal load.)

Installation for WJ200 series (example of SF models)

Model LFx (3-ph. 200V class) and HFx (3-ph. 400V class) are the same concept for the installation.

*) Both earth portions of the shielded cable must be connected to the earth point by cable clamps.
Input choke or equipment to reduce harmonic current is necessary for CE marking (IEC 61000-3-2 and IEC61000-3-3) from the harmonic current point of view, even conducted emission and radiated emission passed without the input choke.

Hitachi EMC Recommendations

WARNING: This equipment should be installed, adjusted, and serviced by qualified personnel familiar with construction and operation of the equipment and the hazards involved. Failure to observe this precaution could result in bodily injury.

Use the following checklist to ensure the inverter is within proper operating ranges and conditions.

1. The power supply to WJ 200 inverters must meet these specifications:

- Voltage fluctuation $\pm 10 \%$ or less
- Voltage imbalance $\pm 3 \%$ or less
- Frequency variation $\pm 4 \%$ or less
- Voltage distortion THD $=10 \%$ or less

2. Installation measure:

- Use a filter designed for WJ200 inverter. Refer to the instruction of the applicable external EMC filter.

3. Wiring:

- Shielded wire (screened cable) is required for motor wiring, and the length must be 20 meter or less.
- If the motor cable length exceeds the value shown above, use output choke to avoid unexpected problem due to the leakage current from the motor cable.
- The carrier frequency setting must be 2 kHz to satisfy EMC requirements.
- Separate the power input and motor wiring from the signal/process circuit wiring.

4. Environmental conditions-when using a filter, follow these guidelines:

- Ambient temperature: -10 to $50^{\circ} \mathrm{C}$ (Derating is required when the ambient temperature exceeds $40^{\circ} \mathrm{C}$)
- Humidity: 20 to 90% RH (non-condensing)
- Vibration: $5.9 \mathrm{~m} / \mathrm{sec} 2$ (0.6 G) $10 \sim 55 \mathrm{~Hz}$
- Location: 1000 meters or less altitude, indoors (no corrosive gas or dust)

Functional Safety

Introduction

The Gate Suppress function can be utilized to perform a safe stop according to the EN60204-1, stop category 0 (Uncontrolled stop by power removal) (as STO function of IEC/EN61800-5-2). It is designed to meet the requirements of the ISO13849-1 Cat. 3 PLd, IEC61508 SIL2 and IEC/EN61800-5-2 SIL2 only in a system in which EDM signal is monitored by an "External Device Monitor".

Stop Category defined in EN60204-1

Category 0 : Uncontrolled stop by immediate (< 200 ms) shut-down of the power supply to the actuators. (as STO function of IEC/EN61800-5-2)

Category 1 : Controlled stop by interrupting the power supply to the actuator level if, for example, the hazardous movement has been brought to a standstill (time-delayed shut-down of the power supply).
(as SS1 function of IEC/EN61800-5-2)
Category 2 : Controlled stop. The power supply to the drive element is not interrupted. Additional measures to EN 1037 (protection from unexpected restart) are necessary. (as SS2 function of IEC/EN61800-5-2)

How it works

Interrupting the current to GS1 or GS2, for example removing the link between either GS1 or GS2 and PLC or both GS1/GS2 and PLC disables the drive output, i.e. the power supply to the motor is cut by stopping the switching of the output transistors in a safe way. EDM output is activated when GS1 and GS2 are given to the drive.

Always use both inputs to disable the drive.
EDM output conducts when both GS1 and GS2 circuits are working properly. If for any reason only one channel is opened, the drive output is stopped but the EDM output is not activated. In this case the Safe Disable input wiring must be checked.

Activation

Turning on the safety switch automatically assign the GS1 input and GS2 input automatically.

To assign EDM (External Device Monitor) output,
please turn the EDM function switch on. EDM output is automatically assigned on intelligent output terminal 11.
(When safety switch or EDM switch is turned off, the intelligent input and output terminal assigned on will be set as "no" function, and contact will remain normally off.)

Always use both inputs to disable the drive. If for any reason only one channel is opened, the drive output is stopped but the EDM output is not activated. In this case the Safe Disable input wiring must be checked.

Installation

According to the safety standard listed above, please install referring to the example.
Please be sure to use the both GS1 and GS2, and construct the system that GS1 and GS2 are both turned off when safety input is given to the inverter.

Be sure to carry out the proof test when installation is ready before operation.

When the Gate Suppress function is utilized, connect the drive to a safety certified interrupting device utilizing EDM output signal to reconfirm both safety inputs GS1 and GS2. Follow the wiring instructions in the Instruction manual.

item	Function code	data	description
Input [3] and [4] function	C003	77	GS1: Safety input 1 (note 1)
	C004	78	GS2: Safety input 2 (note 1)
Input [3] and [4] active state	C013	01	NC: Normally Closed (note 1)
	C014	01	NC: Normally Closed (note 1)
Output [11] function	C021	62	EDM : External Device Monitor(note2)
Output [11] active state	C031	00	NO: Normally Open (note 2)
GS input mode	b145	00	Output is shut off by hardware. No trip.
		01	Output is shut off by hardware, and then, trip. (note3) (note4)
		02	Output is shut off by hardware, and then, trip in some case. (note5)
		03	Output is shut off by hardware, and then, trip in some case. (note6)
		04	Output is shut off by hardware. No trip. (note7)
		05	Output is shut off by hardware, and then, trip in some case. (note8)
		06	Output is shut off by hardware. No trip. (note9)

Note 1) They are automatically set when safety switch is turned ON, cannot be changed.
Note 2) Those are automatically assigned when EDM switch is turned ON, cannot be changed.

Note 3) Inverter trips with "E37". When competing with external trip (E12), E37 has priority.
Note 4) While the drive is the trip status "E37" and either GS1 or GS2 is activated, on the safety by is not guaranteed.

Note 5) Inverter trips with "E98", "E99" or hardware shutoff with "-S--". External error detection is possible (E98).

Note 6) Inverter trips with "E99" or hardware shutoff with "-S--". External error detection is invalid.

Note 7) Hardware shutoff with "-S--". Please check EDM externally.
Note 8) Inverter trips with "E99" or hardware shutoff with "-F01","-F02", "-F01","-F02","-S--". GS1 or GS2 delay detection is valid. EDM is checked inside.

Note 9) Hardware shutoff with "-F01","-F02","-F01","-F02" or "-S--". GS1 or GS2 delay detection is invalid. Please check EDM externally.

- The following table shows the displayed when safe stopping .

Display of the operator	Description
- S--	Safe stopping
-F01	Delay detection by the GS1 under running return operation.
-F02	Delay detection by the GS2 under running return operation.
- F10	Delay detection by the GS1 under safe stopping operation.
-F20	Delay detection by the GS2 under safe stopping operation.

- The following table shows the safety action by GS1,GS2,EDM status and set point of b145.

E98 = Outside failure, E99 = Inside failure

GS1	Close	Open	Close	Open	Close	Open	Close	Open (Shut Act)
GS2	Close	Close	Open	Open	Close	Close	Open	Open
EDM	Open				Close (Act)			
Set 00	-	-	-	-	-	-	-	-
Set 01	-	E37	E37	E37	-	E37	E37	E37
Set 02	-	E98	E98	E99	E99	E99	E99	-S--
Set 03	-	-	-	E99	E99	E99	E99	-S--
Set 04	-	-	-	-	-	-	-	-S--
Set 05	-	$\begin{gathered} \hline \text {-F01 } \\ \text { or } \\ \text {-F20 } \end{gathered}$	$\begin{gathered} \hline-\mathrm{F02} \\ \text { or } \\ -\mathrm{F} 10 \end{gathered}$	E99	E99	E99	E99	-S--
Set 06	-	$\begin{gathered} \hline \text {-F01 } \\ \text { or } \\ \text {-F20 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text {-F02 } \\ \text { or } \\ \text {-F10 } \end{gathered}$	-	-	-	-	-S--

Wiring example

When the Gate Suppress function is utilized, connect the drive to a safety certified interrupting device utilizing EDM output signal to reconfirm both safety inputs GS1 and GS2. Follow the wiring instructions in the Instruction manual.

$\left(^{*}\right)$ Specification of the fuse:
The arch extinguishing fuse with rated voltage AC250V, rated current 100 mA complies to either IEC6127-2/-3/-4 example) SOC EQ series AC250V, 100mA (UL, SEMKO, BSI)

Little 216 series AC250V, 100mA (CCC, UL, CSA, SEMKO, CE, VDE)

Any external signal voltage connected to the WJ200 must be from a SELV Power Supply.

By pressing the emergency stop button, the current to GS1 and GS2 is shut off, and the inverter output is shut off. By this, motor is free-running. This behavior is according to the stop category 0 defined in EN60204.

Note 1: Above is the example to use the intelligent input terminal with source logic. When it is used with sink logic, the wiring is to be modified.

Note 2: The wire for safety relay and emergency input signal are to be shielded coaxial cable for example RS174/U (produced by LAPP) by MIL-C17, or KX2B by NF C $93-550$ with diameter 2.9 mm with less than 2 meters. Please be sure to ground the shielding.

Note 3: All the inductance related parts such as relay and contactor are required to contain the over-voltage protection circuit.
cause the closed circuit when two or more inverters are connected to common I/O wiring as shown below to result in unexpected turning the on the input. This may lead to dangerous situation. To avoid this closed circuit, please put the diode (rated:50V/0.1A) in the path as described below.

IF the protection diodes used when the units are in wired parallel are only single diodes then their condition would be checked as part of the proof test.

In case of Sink logic

In case of Source logic

The current loop cause turn the input ON even the switch is off when diode is not inserted.

Components to be combined

Followings are the example of the safety devices to be combined.

Series	Model	Norms to comply	Certification date
GS9A	301	ISO13849-2 cat4, SIL3	06.06 .2007
G9SX	GS226-T15-RC	IEC61508 SIL1-3	04.11 .2004
NE1A	SCPU01-V1	IEC61508 SIL3	27.09 .2006

The configuration of and components used in any circuit other than an appropriately pre approved safety module that interfaces with the WJ200 GS1/GS2 and EDM ports MUST be at least equivalent to Cat. 3 PLd under ISO 13849-1:2006 in order to be able to claim an overall Cat. 3 PLd for the WJ200 and external circuit combination.

The EMI level that the external module has been assessed to must be at least equivalent to that of Annex E in IEC 62061.

Periodical check (proof test)

Proof test is essential to be able to reveal any dangerous undetected failures after a period of time, in this case 1 year. Carrying out this proof test at least one a year is the condition to comply the ISO13849-1 PLd.

- To activate (give current to) GS1 and GS2 simultaneously and separately to see output is allowed and EDM is conducting

Terminal	Status			
GS1	current OFF	current ON	current OFF	current ON
GS2	current OFF	current OFF	current ON	current ON
EDM	conducted	not conducted	not conducted	not conducted
(output)	forbidden	forbidden	forbidden	Allowed

- To activate (give current to) both GS1 and GS2 to see output is allowed and EDM is not conducting
- To activate (give current to) GS1, not to activate GS2 and see output is forbidden and EDM is not conducting
- To activate (give current to) GS2, not to activate GS1 and see output is forbidden and EDM is not conducting
- To deactivate (interrupt current to) both GS1 and GS2 to see output is forbidden and EDM is conducting

Be sure to carry out the proof test when installation is ready before operation.

IF the protection diodes used when the units are in wired parallel are only single diodes then their condition would be checked as part of the proof test. Check to reconfirm the diodes are not damaged when proof test is done.

Precautions

1. To assure, that the Safe Disable function appropriately fulfills the safety requirements of the application, a throughout risk assessment for the whole safety system has to be carried out.
2. The Safe Disable function does not cut the power supply to the drive and does not provide electrical isolation. Before any installation or maintenance work is done, the drives power supply must be switched off and place a tag/lock-out.
3. The wiring distance for the Safe Disable inputs should be shorter than 30 m .
4. The time from opening the Safe Disable input until the drive output is switched off is less than 10 ms .

EC DECLARATION OF CONFORMITY

We, Hitachi Industrial Equipment Systems Co., Ltd., of
1-1, Higashinarashino 7-chome, Narashino-shi, Chiba 275-8611 Japan
declare under our sole responsibility that:
the Hitachi Sanki WJ200 series of Inverter Drivers which consists of 27 models ranging from motor capacity 0.1 kW to 15 kW with the exact designated model numbers for the WJ200 series detailed as follows.
WJ200-(I)(II)(III)(IV)
$(I)=001,002,004,007,015,022,030,037,040,055,075,110$ or 150
(which stands for the applicable motor capacity in kW)
(II) $=\mathrm{S}, \mathrm{L}$ or H
(S=single phase 200 V power system;
L=3 phases 200V power system,
$\mathrm{H}=3$ phases 400 V power system)
(III) $=\mathrm{F}$ (product is provided with keypad)
(IV) = blank (These model numbers appear on the respective labels of these drives)

Serial number /
(s) / range \qquad (not necessary for the user manual copy of DoC)
conforms to applicable Essential Health and Safety Requirements of the EU Machinery Directive (2006/42/EC) and the Protection Requirements of the EU EMC Directive (2004/108/EC [until April 19th 2016], 2014/30/EU [from April 20th 2016]).

The name and address of the person authorized to compile the technical file, established in the Community is: -

Hitachi Europe GmbH
Am Seestern 18, D-40547 Duesseldorf, Germany.

An EC Type Examination Certificate (Nr. 01/205/0699/09) has been issued by Notified Body (0035) under the EU Machinery Directive by TUV Rheinland Industrie Services GmbH of Alboinstr, 5812103 Berlin Germany.

Harmonised standards used to support this Declaration of Conformity, as referred to in
Article 7(2), include: -
Harmonised standards forming the basis of conformity for the EU Machinery Directive
EN 61800-5-2: 2007
EN ISO 13849-1: 2008 + AC: 2009
EN 61800-5-1: 2007
EN 62061: 2005 + AC: 2010 + A1: 2013
EN 60204-1: 2006 + A1: 2009 + AC: 2010
Harmonised standards forming the basis of conformity for the EU EMC Directive
EN 61800-3: 2004 + A1: 2012
Relevant Standards
IEC 61508 Parts 1-7: 2010
Place and date of the declaration:-
(left blank for DoC on user manual)
Identity and signature of the person empowered to draw up the declaration on behalf of the manufacturer
(left blank for DoC on user manual)

[^0]: \ldots Note
 Keep pressing [ESC] key for more than 1 second leads to d001 display, regardless the display situation. But note that the display will circulates while keep pressing the [ESC] key because of the original function of the key.
 (e.g. FOD I \rightarrow ROO I \rightarrow bOO \rightarrow [OD $\mid \rightarrow \ldots$ displays 50.00 after 1 second)

